Classical Mechanics with Mathematica®

This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overv...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Romano, Antonio (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Marasco, Addolorata (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Modeling and Simulation in Science, Engineering and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05668nam a2200553 4500
001 978-3-319-77595-1
003 DE-He213
005 20191027002128.0
007 cr nn 008mamaa
008 180529s2018 gw | s |||| 0|eng d
020 |a 9783319775951  |9 978-3-319-77595-1 
024 7 |a 10.1007/978-3-319-77595-1  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Romano, Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Classical Mechanics with Mathematica®  |h [electronic resource] /  |c by Antonio Romano, Addolorata Marasco. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XVI, 644 p. 150 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
505 0 |a Part I: Introduction to Linear Algebra and Differential Geometry -- Vector Spaces and Linear Maps -- Tensor Algebra -- Skew-Symmetric Tensors and Exterior Algebra -- Euclidean and Symplectic Vector Spaces -- Duality and Euclidean Tensors -- Differentiable Manifolds -- One-Parameter Groups of Diffeomorphisms -- Exterior Derivative and Integration -- Absolute Differential Calculus -- An Overview of Dynamical Systems -- Part II: Mechanics -- Kinematics of a Point Particle -- Kinematics of Rigid Bodies -- Principles of Dynamics -- Dynamics of a Material Point -- General Principles of Rigid Body Dynamics -- Dynamics of a Rigid Body -- Lagrangian Dynamics -- Hamiltonian Dynamics -- The Hamilton-Jacobi Theory -- Completely Integrable Systems -- Elements of Statistical Mechanics of Equilibrium -- Impulsive Dynamics -- Introduction to Fluid Mechanics -- An Introduction to Celestial Dynamics -- One-Dimensional Continuous Systems -- An Introduction to Special Relativity -- Variational Calculus with Applications -- Appendix A: First-Order PDEs -- Appendix B: Fourier Analysis -- Index. 
520 |a This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field-from Newton to Hamilton-while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics. Reviews of the First Edition: "The volume represents a real contribution to the field, being useful not only to students but to all readers who wish to have correct and well-written information." - Petre P. Teodorescu, zbMATH, Vol. 1263, 2013 "By centering his presentation around the major aspects and omitting less important details, the author succeeds in providing a concise though lucid introduction into the mathematical areas. It enjoys many qualities that render this book a promising candidate for becoming a standard text in physics classrooms." - H. Hogreve, Mathematical Reviews, October 2013. 
650 0 |a Mathematical physics. 
650 0 |a Differential geometry. 
650 0 |a Mechanics. 
650 0 |a Physics. 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Classical Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21018 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
700 1 |a Marasco, Addolorata.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319775944 
776 0 8 |i Printed edition:  |z 9783319775968 
776 0 8 |i Printed edition:  |z 9783030084899 
830 0 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
856 4 0 |u https://doi.org/10.1007/978-3-319-77595-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)