Intelligent Methods and Big Data in Industrial Applications

The inspiration for this book came from the Industrial Session of the ISMIS 2017 Conference in Warsaw. It covers numerous applications of intelligent technologies in various branches of the industry. Intelligent computational methods and big data foster innovation and enable the industry to overcome...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bembenik, Robert (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Skonieczny, Łukasz (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Protaziuk, Grzegorz (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kryszkiewicz, Marzena (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Rybinski, Henryk (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Big Data, 40
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05854nam a2200589 4500
001 978-3-319-77604-0
003 DE-He213
005 20191027151624.0
007 cr nn 008mamaa
008 180518s2019 gw | s |||| 0|eng d
020 |a 9783319776040  |9 978-3-319-77604-0 
024 7 |a 10.1007/978-3-319-77604-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Intelligent Methods and Big Data in Industrial Applications  |h [electronic resource] /  |c edited by Robert Bembenik, Łukasz Skonieczny, Grzegorz Protaziuk, Marzena Kryszkiewicz, Henryk Rybinski. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 376 p. 124 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 40 
505 0 |a Nonlinear forecasting of energy futures -- Implementation of Generic Steering Algorithms for AI Agents in Computer Games -- The Dilemma of InnovationArticial Intelligence Trade-off -- Can we build recommender system for artwork evaluation?- Modelling OpenStreepMap data for determination of the fastest route under varying driving conditions -- Evolution algorithm for community detection in social networks using node centrality -- High Performance Computing By The Crowd -- Zero-overhead monitoring of remote terminal devices -- Asynchronous Specication of Production Cell Benchmark in Integrated Model of Distributed Systems -- Implementing the Bus Protocol of a Microprocessor in a Software-Dened Computer -- ISMIS 2017 Data Mining Competition: TradingBased on Recommendations - XGBoost approach with feature engineering -- Fast Discovery of Generalized Sequential Patterns -- Seismic attributes similarity in facies classication -- Ecient Discovery of Sequential Patterns from Event-Based Spatio-Temporal Data by Applying Microclustering Approach -- Unsupervised machine learning in classication of neurobiological data -- Incorporating Fuzzy Logic in Object-Relational Mapping Layer for Flexible Medical Screenings -- Multimodal learning determines rules of disease development in longitudinal course with Parkinson's patients -- Comparison of Methods for Real and Imaginary Motion Classication from EEG Signals -- Procedural Generation of Multilevel Dungeons for Application in Computer Games using Schematic Maps and L-system -- An HMM-Based Framework for Supporting Accurate Classication of Music Datasets -- Classication of musical genres by means of listening tests and decision algorithms -- Handwritten signature verication system employing wireless biometric pen -- Towards Entity Timeline Analysis in Polish Political News -- Automatic Legal Document Analysis: Improving the Results of Information Extraction Processes using an Ontology -- To improve, or not to improve; how changes in corpora inuence the results of machine learning tasks on the example of datasets used for paraphrase identication -- Context Sensitive Sentiment Analysis of Financial Tweets: A New Dictionary. 
520 |a The inspiration for this book came from the Industrial Session of the ISMIS 2017 Conference in Warsaw. It covers numerous applications of intelligent technologies in various branches of the industry. Intelligent computational methods and big data foster innovation and enable the industry to overcome technological limitations and explore the new frontiers. Therefore it is necessary for scientists and practitioners to cooperate and inspire each other, and use the latest research findings to create new designs and products. As such, the contributions cover solutions to the problems experienced by practitioners in the areas of artificial intelligence, complex systems, data mining, medical applications and bioinformatics, as well as multimedia- and text processing. Further, the book shows new directions for cooperation between science and industry and facilitates efficient transfer of knowledge in the area of intelligent information systems. . 
650 0 |a Computational intelligence. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a Bembenik, Robert.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Skonieczny, Łukasz.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Protaziuk, Grzegorz.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kryszkiewicz, Marzena.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rybinski, Henryk.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319776033 
776 0 8 |i Printed edition:  |z 9783319776057 
776 0 8 |i Printed edition:  |z 9783030084929 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 40 
856 4 0 |u https://doi.org/10.1007/978-3-319-77604-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)