How We Understand Mathematics Conceptual Integration in the Language of Mathematical Description /

This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Woźny, Jacek (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathematics in Mind,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03295nam a2200505 4500
001 978-3-319-77688-0
003 DE-He213
005 20190620031047.0
007 cr nn 008mamaa
008 180425s2018 gw | s |||| 0|eng d
020 |a 9783319776880  |9 978-3-319-77688-0 
024 7 |a 10.1007/978-3-319-77688-0  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBV  |2 thema 
082 0 4 |a 511.6  |2 23 
100 1 |a Woźny, Jacek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a How We Understand Mathematics  |h [electronic resource] :  |b Conceptual Integration in the Language of Mathematical Description /  |c by Jacek Woźny. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 118 p. 16 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics in Mind,  |x 2522-5405 
505 0 |a 1. Introduction -- 2. The Theoretical Framework and the Subject of Study -- 3. Sets -- 4. Mappings -- 5. Groups -- 6. Rings, Fields, and Vector Spaces -- 7. Summary and Conclusion -- Sources. . 
520 |a This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well. . 
650 0 |a Combinatorics. 
650 0 |a Cognitive grammar. 
650 0 |a Group theory. 
650 1 4 |a Combinatorics.  |0 http://scigraph.springernature.com/things/product-market-codes/M29010 
650 2 4 |a Cognitive Linguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N58000 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319776873 
776 0 8 |i Printed edition:  |z 9783319776897 
776 0 8 |i Printed edition:  |z 9783030085131 
830 0 |a Mathematics in Mind,  |x 2522-5405 
856 4 0 |u https://doi.org/10.1007/978-3-319-77688-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)