Network Data Analytics A Hands-On Approach for Application Development /

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Srinivasa, K. G. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), G. M., Siddesh (http://id.loc.gov/vocabulary/relators/aut), H., Srinidhi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Computer Communications and Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04393nam a2200577 4500
001 978-3-319-77800-6
003 DE-He213
005 20191025042601.0
007 cr nn 008mamaa
008 180426s2018 gw | s |||| 0|eng d
020 |a 9783319778006  |9 978-3-319-77800-6 
024 7 |a 10.1007/978-3-319-77800-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Srinivasa, K. G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Network Data Analytics  |h [electronic resource] :  |b A Hands-On Approach for Application Development /  |c by K. G. Srinivasa, Siddesh G. M., Srinidhi H. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXV, 398 p. 155 illus., 117 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computer Communications and Networks,  |x 1617-7975 
505 0 |a Part I: Data Analytics and Hadoop -- Chapter 1. Introduction to Data Analytics -- Chapter 2. Introduction to Hadoop -- Chapter 3. Data Analytics with Map Reduce -- Part II: Tools for Data Analytics -- Chapter 4. Apache Pig -- Chapter 5. Apache Hive -- Chapter 6. Apache Spark -- Chapter 7. Apache Flume -- Chapter 8. Apache Storm -- Chapter 9. Python R -- Part III: Machine Learning for Data Analytics -- Chapter 10. Basics of Machine Learning -- Chapter 11. Linear Regression -- Chapter 12. Logistic Regression -- Chapter 13. Machine Learning on Spark -- Part IV: Exploring and Visualizing Data -- Chapter 14. Introduction to Visualization -- Chapter 15. Principles of Data Visualization -- Chapter 16. Visualization Charts -- Chapter 17. Popular Visualization Tools -- Chapter 18. Data Visualization with Hadoop -- Part V: Case Studies -- Chapter 19. Product Recommendation -- Chapter 20. Market Basket Analysis. 
520 |a In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Visualization.  |0 http://scigraph.springernature.com/things/product-market-codes/M14034 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a G. M., Siddesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a H., Srinidhi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319777993 
776 0 8 |i Printed edition:  |z 9783319778013 
776 0 8 |i Printed edition:  |z 9783030085445 
830 0 |a Computer Communications and Networks,  |x 1617-7975 
856 4 0 |u https://doi.org/10.1007/978-3-319-77800-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)