Ramanujan's Lost Notebook Part V /

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon des...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Andrews, George E. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Berndt, Bruce C. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04821nam a2200493 4500
001 978-3-319-77834-1
003 DE-He213
005 20191025081130.0
007 cr nn 008mamaa
008 180905s2018 gw | s |||| 0|eng d
020 |a 9783319778341  |9 978-3-319-77834-1 
024 7 |a 10.1007/978-3-319-77834-1  |2 doi 
040 |d GrThAP 
050 4 |a QA351 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.5  |2 23 
100 1 |a Andrews, George E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ramanujan's Lost Notebook  |h [electronic resource] :  |b Part V /  |c by George E. Andrews, Bruce C. Berndt. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 430 p. 3 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1. Introduction -- 2. Third Order Mock Theta Functions: Elementary Identities -- 3. Fifth Order Mock Theta Functions: Elementary Identities -- 4. Third Order Mock Theta Functions: Partial Fraction Expansions -- 5. The Mock Theta Conjectures: Equivalence -- 6. Fifth Order Mock Theta Functions: Proof of the Mock Theta Conjectures -- 7. Sixth Order Mock Theta Functions -- 8. Tenth Order Mock Theta Functions. Part I, The First Four Identities -- 9. Tenth Order Mock Theta Functions: Part II, Identities for phi10(q), psi10(q) -- 10. Tenth Order Mock Theta Functions: Part III, Identities for ch10(q), kh10(q) -- 11. Tenth Order Mock Theta Functions. Part IV -- 12. Transformation Formulas: 10th Order Mock Theta Functions -- 13. Two Identities Involving a Mordell Integral and Appel-Lerch Sums -- 14. Ramanujan's Last Letter to Hardy -- 15. Euler Products in Ramanujan's Lost Notebook -- 16. Continued Fractions -- 17. Recent Work on Mock Theta Functions -- 18. Commentary on and Corrections to the First Four Volumes -- 19. The Continuing Mystery -- Location Guide -- Provenance -- References -- Index. 
520 |a In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited." - MathSciNet Review from the first volume: "Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete." - Gazette of the Australian Mathematical Society. 
650 0 |a Special functions. 
650 0 |a Functions of complex variables. 
650 0 |a Number theory. 
650 1 4 |a Special Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M1221X 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
700 1 |a Berndt, Bruce C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319778327 
776 0 8 |i Printed edition:  |z 9783319778334 
776 0 8 |i Printed edition:  |z 9783030085506 
856 4 0 |u https://doi.org/10.1007/978-3-319-77834-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)