Data Privacy Games

With the growing popularity of "big data", the potential value of personal data has attracted more and more attention. Applications built on personal data can create tremendous social and economic benefits. Meanwhile, they bring serious threats to individual privacy. The extensive collecti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Xu, Lei (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Jiang, Chunxiao (http://id.loc.gov/vocabulary/relators/aut), Qian, Yi (http://id.loc.gov/vocabulary/relators/aut), Ren, Yong (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04921nam a2200601 4500
001 978-3-319-77965-2
003 DE-He213
005 20191022112606.0
007 cr nn 008mamaa
008 180424s2018 gw | s |||| 0|eng d
020 |a 9783319779652  |9 978-3-319-77965-2 
024 7 |a 10.1007/978-3-319-77965-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
100 1 |a Xu, Lei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Privacy Games  |h [electronic resource] /  |c by Lei Xu, Chunxiao Jiang, Yi Qian, Yong Ren. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 181 p. 52 illus., 46 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 The Conflict between Big Data and Individual Privacy -- 2 Privacy-Preserving Data Collecting: A Simple Game Theoretic Approach -- 3 Contract-based Private Data Collecting -- 4 Dynamic Privacy Pricing -- 5 User Participation Game in Collaborative Filtering -- 6 Privacy-Accuracy Trade-off in Distributed Data Mining -- 7 Conclusion. 
520 |a With the growing popularity of "big data", the potential value of personal data has attracted more and more attention. Applications built on personal data can create tremendous social and economic benefits. Meanwhile, they bring serious threats to individual privacy. The extensive collection, analysis and transaction of personal data make it difficult for an individual to keep the privacy safe. People now show more concerns about privacy than ever before. How to make a balance between the exploitation of personal information and the protection of individual privacy has become an urgent issue. In this book, the authors use methodologies from economics, especially game theory, to investigate solutions to the balance issue. They investigate the strategies of stakeholders involved in the use of personal data, and try to find the equilibrium. The book proposes a user-role based methodology to investigate the privacy issues in data mining, identifying four different types of users, i.e. four user roles, involved in data mining applications. For each user role, the authors discuss its privacy concerns and the strategies that it can adopt to solve the privacy problems. The book also proposes a simple game model to analyze the interactions among data provider, data collector and data miner. By solving the equilibria of the proposed game, readers can get useful guidance on how to deal with the trade-off between privacy and data utility. Moreover, to elaborate the analysis on data collector's strategies, the authors propose a contract model and a multi-armed bandit model respectively. The authors discuss how the owners of data (e.g. an individual or a data miner) deal with the trade-off between privacy and utility in data mining. Specifically, they study users' strategies in collaborative filtering based recommendation system and distributed classification system. They built game models to formulate the interactions among data owners, and propose learning algorithms to find the equilibria. 
650 0 |a Data structures (Computer science). 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Management information systems. 
650 0 |a Computer science. 
650 0 |a E-commerce. 
650 1 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Management of Computing and Information Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/I24067 
650 2 4 |a e-Commerce/e-business.  |0 http://scigraph.springernature.com/things/product-market-codes/I26000 
700 1 |a Jiang, Chunxiao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Qian, Yi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ren, Yong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319779645 
776 0 8 |i Printed edition:  |z 9783319779669 
776 0 8 |i Printed edition:  |z 9783030085865 
856 4 0 |u https://doi.org/10.1007/978-3-319-77965-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)