Dynamical Systems with Applications using Python

This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lynch, Stephen (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04950nam a2200577 4500
001 978-3-319-78145-7
003 DE-He213
005 20191022022644.0
007 cr nn 008mamaa
008 181009s2018 gw | s |||| 0|eng d
020 |a 9783319781457  |9 978-3-319-78145-7 
024 7 |a 10.1007/978-3-319-78145-7  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Lynch, Stephen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamical Systems with Applications using Python  |h [electronic resource] /  |c by Stephen Lynch. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XVI, 665 p. 277 illus., 118 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- A Tutorial Introduction to Python -- Differential Equations -- Planar Systems -- Interacting Species -- Limit Cycles -- Hamiltonian Systems, Lyapunov Functions, and Stability -- Bifurcation Theory -- Three-Dimensional Autonomous Systems and Chaos -- Poincaré Maps and Nonautonomous Systems in the Plane -- Local and Global Bifurcations -- The Second Part of Hilbert's Sixteenth Problem -- Delay Differential Equations -- Linear Discrete Dynamical Systems -- Nonlinear Discrete Dynamical Systems -- Complex Iterative Maps -- Electromagnectic Waves and Optical Resonators -- Fractals and Multifractals -- Image Processing with Python -- Chaos Control and Synchronization -- Neural Networks -- Binary Oscillator Computing -- Coursework and Examination-Type Questions -- Solutions to Exercises -- Index of Python Programs -- Index. 
520 |a This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python's extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams. After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students' programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential. . 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
650 2 4 |a Complex Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P33000 
650 2 4 |a Ordinary Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12147 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Statistical Physics and Dynamical Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P19090 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319781440 
776 0 8 |i Printed edition:  |z 9783319781464 
776 0 8 |i Printed edition:  |z 9783030086244 
856 4 0 |u https://doi.org/10.1007/978-3-319-78145-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)