Linear Algebra and Analytic Geometry for Physical Sciences

A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Landi, Giovanni (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Zampini, Alessandro (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Undergraduate Lecture Notes in Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04499nam a2200601 4500
001 978-3-319-78361-1
003 DE-He213
005 20191022012302.0
007 cr nn 008mamaa
008 180512s2018 gw | s |||| 0|eng d
020 |a 9783319783611  |9 978-3-319-78361-1 
024 7 |a 10.1007/978-3-319-78361-1  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Landi, Giovanni.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear Algebra and Analytic Geometry for Physical Sciences  |h [electronic resource] /  |c by Giovanni Landi, Alessandro Zampini. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 345 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
505 0 |a Introduction -- Vectors and coordinate systems -- Vector spaces -- Euclidean vector spaces -- Matrices -- The determinant -- Systems of linear equations -- Linear transformations -- Dual spaces -- Endomorphisms and diagonalization -- Spectral theorems on euclidean spaces -- Rotations -- Spectral theorems on hermitian spaces -- Quadratic forms -- Affine linear geometry -- Euclidean affine linear geometry -- Conic sections -- A Algebraic Structures -- A.1 A few notions of Set Theory -- A.2 Groups -- A.3 Rings and Fields -- A.4 Maps between algebraic structures -- A5 Complex numbers -- A.6 Integers modulo a prime number. 
520 |a A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises. Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac's bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number. The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification. 
650 0 |a Physics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Geometry. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11094 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
650 2 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
700 1 |a Zampini, Alessandro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319783604 
776 0 8 |i Printed edition:  |z 9783319783628 
830 0 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
856 4 0 |u https://doi.org/10.1007/978-3-319-78361-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)