Real Analysis and Applications

This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addres...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Botelho, Fabio Silva (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03108nam a2200481 4500
001 978-3-319-78631-5
003 DE-He213
005 20191024214141.0
007 cr nn 008mamaa
008 180514s2018 gw | s |||| 0|eng d
020 |a 9783319786315  |9 978-3-319-78631-5 
024 7 |a 10.1007/978-3-319-78631-5  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKB  |2 thema 
082 0 4 |a 515.8  |2 23 
100 1 |a Botelho, Fabio Silva.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Real Analysis and Applications  |h [electronic resource] /  |c by Fabio Silva Botelho. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 567 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 01- Real Numbers -- Chapter 02- Metric Spaces -- Chapter 03- Real Sequences and Series -- Chapter 04- Real Function Limits -- Chapter 05- Continuous Functions -- Chapter 06- Derivatives -- Chapter 07- The Riemann Integral -- Chapter 08- Differential Analysis in Rn -- Chapter 09- Integration in Rn -- Chapter 10- Topics on Vector Calculus and Vector Analysis. 
520 |a This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis. 
650 0 |a Functions of real variables. 
650 0 |a Measure theory. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
650 2 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
650 2 4 |a Sequences, Series, Summability.  |0 http://scigraph.springernature.com/things/product-market-codes/M1218X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319786308 
776 0 8 |i Printed edition:  |z 9783319786322 
776 0 8 |i Printed edition:  |z 9783030087500 
856 4 0 |u https://doi.org/10.1007/978-3-319-78631-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)