The Gradient Discretisation Method

This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provide...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Droniou, Jérôme (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Eymard, Robert (http://id.loc.gov/vocabulary/relators/aut), Gallouët, Thierry (http://id.loc.gov/vocabulary/relators/aut), Guichard, Cindy (http://id.loc.gov/vocabulary/relators/aut), Herbin, Raphaèle (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathématiques et Applications, 82
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04152nam a2200517 4500
001 978-3-319-79042-8
003 DE-He213
005 20191220130827.0
007 cr nn 008mamaa
008 180731s2018 gw | s |||| 0|eng d
020 |a 9783319790428  |9 978-3-319-79042-8 
024 7 |a 10.1007/978-3-319-79042-8  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Droniou, Jérôme.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Gradient Discretisation Method  |h [electronic resource] /  |c by Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXIV, 497 p. 33 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathématiques et Applications,  |x 1154-483X ;  |v 82 
505 0 |a Part I Elliptic problems -- Part II Parabolic problems -- Part III Examples of gradient discretisation methods -- Part IV Appendix. 
520 |a This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray-Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin-simon,="" discontinuous="" ascoli-arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations. 
650 0 |a Computer mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
700 1 |a Eymard, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Gallouët, Thierry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Guichard, Cindy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Herbin, Raphaèle.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319790411 
776 0 8 |i Printed edition:  |z 9783319790435 
830 0 |a Mathématiques et Applications,  |x 1154-483X ;  |v 82 
856 4 0 |u https://doi.org/10.1007/978-3-319-79042-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)