Low-Rank Approximation Algorithms, Implementation, Applications /

This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Markovsky, Ivan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Σειρά:Communications and Control Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05045nam a2200649 4500
001 978-3-319-89620-5
003 DE-He213
005 20191024091743.0
007 cr nn 008mamaa
008 180803s2019 gw | s |||| 0|eng d
020 |a 9783319896205  |9 978-3-319-89620-5 
024 7 |a 10.1007/978-3-319-89620-5  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Markovsky, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Low-Rank Approximation  |h [electronic resource] :  |b Algorithms, Implementation, Applications /  |c by Ivan Markovsky. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 272 p. 19 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 0178-5354 
505 0 |a Chapter 1. Introduction -- Part I: Linear modeling problems -- Chapter 2. From data to models -- Chapter 3. Exact modelling -- Chapter 4. Approximate modelling -- Part II: Applications and generalizations -- Chapter 5. Applications -- Chapter 6. Data-driven filtering and control -- Chapter 7. Nonlinear modeling problems -- Chapter 8. Dealing with prior knowledge -- Index. . 
520 |a This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory with a range of applications from systems and control theory to psychometrics being described. Special knowledge of the application fields is not required. The second edition of /Low-Rank Approximation/ is a thoroughly edited and extensively rewritten revision. It contains new chapters and sections that introduce the topics of: • variable projection for structured low-rank approximation; • missing data estimation; • data-driven filtering and control; • stochastic model representation and identification; • identification of polynomial time-invariant systems; and • blind identification with deterministic input model. The book is complemented by a software implementation of the methods presented, which makes the theory directly applicable in practice. In particular, all numerical examples in the book are included in demonstration files and can be reproduced by the reader. This gives hands-on experience with the theory and methods detailed. In addition, exercises and MATLAB^® /Octave examples will assist the reader quickly to assimilate the theory on a chapter-by-chapter basis. "Each chapter is completed with a new section of exercises to which complete solutions are provided." Low-Rank Approximation (second edition) is a broad survey of the Low-Rank Approximation theory and applications of its field which will be of direct interest to researchers in system identification, control and systems theory, numerical linear algebra and optimization. The supplementary problems and solutions render it suitable for use in teaching graduate courses in those subjects as well. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a System theory. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Artificial intelligence. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Symbolic and Algebraic Manipulation.  |0 http://scigraph.springernature.com/things/product-market-codes/I17052 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M14068 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319896199 
776 0 8 |i Printed edition:  |z 9783319896212 
776 0 8 |i Printed edition:  |z 9783030078171 
830 0 |a Communications and Control Engineering,  |x 0178-5354 
856 4 0 |u https://doi.org/10.1007/978-3-319-89620-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)