Computational Intelligence for Pattern Recognition

The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern reco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pedrycz, Witold (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Chen, Shyi-Ming (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Studies in Computational Intelligence, 777
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04440nam a2200517 4500
001 978-3-319-89629-8
003 DE-He213
005 20191021181640.0
007 cr nn 008mamaa
008 180430s2018 gw | s |||| 0|eng d
020 |a 9783319896298  |9 978-3-319-89629-8 
024 7 |a 10.1007/978-3-319-89629-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational Intelligence for Pattern Recognition  |h [electronic resource] /  |c edited by Witold Pedrycz, Shyi-Ming Chen. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 428 p. 151 illus., 118 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 777 
505 0 |a Robust Constrained Concept Factorization -- An Automatic Cycling Performance Measurement System Based on ANFIS -- Fuzzy Classifiers Learned Through SVMs With Application to Specific Object Detection and Shape Extraction Using an RGB-D Camera -- Low Cost Parkinson's Disease Early Detection and Classification Based on Voice and Electromyography Signal -- Particle Swarm Optimization Based HMM Parameter Estimation for Spectrum Sensing in Cognitive Radio System -- Improving Sparse Representation-Based Classification Using Local Principal Component Analysis -- Fuzzy Choquet Integration of Deep Convolutional Neural Networks for Remote Sensing -- Computational Intelligence for Pattern Recognition in EEG Signals -- Neural Network Based Physical Disorder Recognition for Elderly Health Care -- Deep Neural Networks for Structured Data -- Recognizing Subtle Micro-Facial Expressions Using Fuzzy Histogram of Optical Flow Orientations and Feature Selection Methods -- Granular Computing Techniques for Bioinformatics Pattern Recognition Problems in Non-Metric Spaces -- Multi-Classifier-Systems: Architectures, Algorithms and Applications -- Learning Label Dependency and Label Preference Relations in Graded Multi-Label Classification -- Improved Deep Neural Network Object Tracking System for Applications in Home Robotics. 
520 |a The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
700 1 |a Pedrycz, Witold.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chen, Shyi-Ming.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319896281 
776 0 8 |i Printed edition:  |z 9783319896304 
776 0 8 |i Printed edition:  |z 9783030078195 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 777 
856 4 0 |u https://doi.org/10.1007/978-3-319-89629-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)