Learning from Data Streams in Evolving Environments Methods and Applications /

This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sayed-Mouchaweh, Moamar (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Big Data, 41
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04231nam a2200553 4500
001 978-3-319-89803-2
003 DE-He213
005 20191025071653.0
007 cr nn 008mamaa
008 180728s2019 gw | s |||| 0|eng d
020 |a 9783319898032  |9 978-3-319-89803-2 
024 7 |a 10.1007/978-3-319-89803-2  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Learning from Data Streams in Evolving Environments  |h [electronic resource] :  |b Methods and Applications /  |c edited by Moamar Sayed-Mouchaweh. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 317 p. 131 illus., 95 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 41 
505 0 |a Chapter1: Transfer Learning in Non-Stationary Environments -- Chapter2: A new combination of diversity techniques in ensemble classifiers for handling complex concept drift -- Chapter3: Analyzing and Clustering Pareto-Optimal Objects in Data Streams -- Chapter4: Error-bounded Approximation of Data Stream: Methods and Theories -- Chapter5: Ensemble Dynamics in Non-stationary Data Stream Classification -- Chapter6: Processing Evolving Social Networks for Change Detection based on Centrality Measures -- Chapter7: Large-scale Learning from Data Streams with Apache SAMOA -- Chapter8: Process Mining for Analyzing Customer Relationship Management Systems A Case Study -- Chapter9: Detecting Smooth Cluster Changes in Evolving Graph Sequences -- Chapter10: Efficient Estimation of Dynamic Density Functions with Applications in Data Streams -- Chapter11: A Survey of Methods of Incremental Support Vector Machine Learning -- Chapter12: On Social Network-based Algorithms for Data Stream Clustering. 
520 |a This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field. Provides multiple examples to facilitate the understanding data streams in non-stationary environments; Presents several application cases to show how the methods solve different real world problems; Discusses the links between methods to help stimulate new research and application directions. 
650 0 |a Electrical engineering. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 0 |a Data mining. 
650 0 |a Control engineering. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Quality Control, Reliability, Safety and Risk.  |0 http://scigraph.springernature.com/things/product-market-codes/T22032 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
700 1 |a Sayed-Mouchaweh, Moamar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319898025 
776 0 8 |i Printed edition:  |z 9783319898049 
776 0 8 |i Printed edition:  |z 9783030078621 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 41 
856 4 0 |u https://doi.org/10.1007/978-3-319-89803-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)