Learning from Data Streams in Evolving Environments Methods and Applications /

This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sayed-Mouchaweh, Moamar (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Big Data, 41
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter1: Transfer Learning in Non-Stationary Environments
  • Chapter2: A new combination of diversity techniques in ensemble classifiers for handling complex concept drift
  • Chapter3: Analyzing and Clustering Pareto-Optimal Objects in Data Streams
  • Chapter4: Error-bounded Approximation of Data Stream: Methods and Theories
  • Chapter5: Ensemble Dynamics in Non-stationary Data Stream Classification
  • Chapter6: Processing Evolving Social Networks for Change Detection based on Centrality Measures
  • Chapter7: Large-scale Learning from Data Streams with Apache SAMOA
  • Chapter8: Process Mining for Analyzing Customer Relationship Management Systems A Case Study
  • Chapter9: Detecting Smooth Cluster Changes in Evolving Graph Sequences
  • Chapter10: Efficient Estimation of Dynamic Density Functions with Applications in Data Streams
  • Chapter11: A Survey of Methods of Incremental Support Vector Machine Learning
  • Chapter12: On Social Network-based Algorithms for Data Stream Clustering.