Recent Advances in Ensembles for Feature Selection

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and eval...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bolón-Canedo, Verónica (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Alonso-Betanzos, Amparo (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Intelligent Systems Reference Library, 147
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03643nam a2200517 4500
001 978-3-319-90080-3
003 DE-He213
005 20191220131245.0
007 cr nn 008mamaa
008 180430s2018 gw | s |||| 0|eng d
020 |a 9783319900803  |9 978-3-319-90080-3 
024 7 |a 10.1007/978-3-319-90080-3  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Bolón-Canedo, Verónica.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Recent Advances in Ensembles for Feature Selection  |h [electronic resource] /  |c by Verónica Bolón-Canedo, Amparo Alonso-Betanzos. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 205 p. 39 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 147 
505 0 |a Basic concepts -- Feature selection -- Foundations of ensemble learning -- Ensembles for feature selection -- Combination of outputs -- Evaluation of ensembles for feature selection -- Other ensemble approaches -- Applications of ensembles versus traditional approaches: experimental results -- Software tools -- Emerging Challenges. . 
520 |a This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
700 1 |a Alonso-Betanzos, Amparo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319900797 
776 0 8 |i Printed edition:  |z 9783319900810 
776 0 8 |i Printed edition:  |z 9783030079291 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 147 
856 4 0 |u https://doi.org/10.1007/978-3-319-90080-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)