Network Intelligence Meets User Centered Social Media Networks

This edited volume presents advances in modeling and computational analysis techniques related to networks and online communities. It contains the best papers of notable scientists from the 4th European Network Intelligence Conference (ENIC 2017) that have been peer reviewed and expanded into the pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Alhajj, Reda (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hoppe, H. Ulrich (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hecking, Tobias (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Bródka, Piotr (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kazienko, Przemyslaw (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes in Social Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04780nam a2200613 4500
001 978-3-319-90312-5
003 DE-He213
005 20191027041740.0
007 cr nn 008mamaa
008 180731s2018 gw | s |||| 0|eng d
020 |a 9783319903125  |9 978-3-319-90312-5 
024 7 |a 10.1007/978-3-319-90312-5  |2 doi 
040 |d GrThAP 
050 4 |a H61.3 
072 7 |a J  |2 bicssc 
072 7 |a SOC000000  |2 bisacsh 
072 7 |a UXJ  |2 thema 
082 0 4 |a 300.00285  |2 23 
245 1 0 |a Network Intelligence Meets User Centered Social Media Networks  |h [electronic resource] /  |c edited by Reda Alhajj, H. Ulrich Hoppe, Tobias Hecking, Piotr Bródka, Przemyslaw Kazienko. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VI, 247 p. 63 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Social Networks,  |x 2190-5428 
505 0 |a Data-based centrality measures -- Extracting the Main Path of historic events from Wikipedia -- Simulating trade in economic networks with TrEcSim -- Community Aliveness: Discovering interaction decay patterns in online social communities -- Network Patterns of Direct and Indirect Reciprocity in edX MOOC Forums -- Targeting influential nodes for recovery in bootstrap percolation on hyperbolic networks -- Trump versus Clinton - Twitter communication during the US primaries -- Extended feature-driven graph model for Social Media Networks -- Market basket analysis using minimum spanning trees -- Behavior-based relevance estimation for social networks interaction relations -- Sponge walker: Community detection in large directed social networks using local structures and random walks -- Identifying promising research topics in Computer Science -- Identifying accelerators of information diffusion across social media channels -- Towards an ILP approach for learning privacy heuristics from users' regrets -- Strength of nations: A case study on estimating the influence of leading countries using social media analysis -- Incremental learning in dynamic networks for node classification. 
520 |a This edited volume presents advances in modeling and computational analysis techniques related to networks and online communities. It contains the best papers of notable scientists from the 4th European Network Intelligence Conference (ENIC 2017) that have been peer reviewed and expanded into the present format. The aim of this text is to share knowledge and experience as well as to present recent advances in the field. The book is a nice mix of basic research topics such as data-based centrality measures along with intriguing applied topics, for example, interaction decay patterns in online social communities. This book will appeal to students, professors, and researchers working in the fields of data science, computational social science, and social network analysis. . 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
650 0 |a Physics. 
650 0 |a Data mining. 
650 0 |a Internet marketing. 
650 0 |a Graph theory. 
650 1 4 |a Computational Social Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/X34000 
650 2 4 |a Applications of Graph Theory and Complex Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/P33010 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Online Marketing/Social Media.  |0 http://scigraph.springernature.com/things/product-market-codes/513010 
650 2 4 |a Graph Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M29020 
700 1 |a Alhajj, Reda.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hoppe, H. Ulrich.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hecking, Tobias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bródka, Piotr.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kazienko, Przemyslaw.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319903118 
776 0 8 |i Printed edition:  |z 9783319903132 
776 0 8 |i Printed edition:  |z 9783030079895 
830 0 |a Lecture Notes in Social Networks,  |x 2190-5428 
856 4 0 |u https://doi.org/10.1007/978-3-319-90312-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SLS 
950 |a Social Sciences (Springer-41176)