Elliptic Systems of Phase Transition Type

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Alikakos, Nicholas D. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Fusco, Giorgio (http://id.loc.gov/vocabulary/relators/aut), Smyrnelis, Panayotis (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications, 91
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04701nam a2200517 4500
001 978-3-319-90572-3
003 DE-He213
005 20191025083041.0
007 cr nn 008mamaa
008 190121s2018 gw | s |||| 0|eng d
020 |a 9783319905723  |9 978-3-319-90572-3 
024 7 |a 10.1007/978-3-319-90572-3  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Alikakos, Nicholas D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Elliptic Systems of Phase Transition Type  |h [electronic resource] /  |c by Nicholas D. Alikakos, Giorgio Fusco, Panayotis Smyrnelis. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XII, 343 p. 59 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 91 
505 0 |a Introduction -- Connections -- Basics for the PDE System -- The Cut-Off Lemma and a Maximum Principle -- Estimates -- Symmetry and the Vector Allen-Cahn Equation: the Point Group in Rn -- Symmetry and the Vector Allen-Cahn Equation: Crystalline and Other Complex Structures -- Hierarchical Structure - Stratification -- Vector Minimizers in R2 -- Radial Solutions of ∆u = c2u. 
520 |a This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations - ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 0 |a Differential equations. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Ordinary Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12147 
700 1 |a Fusco, Giorgio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Smyrnelis, Panayotis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319905716 
776 0 8 |i Printed edition:  |z 9783319905730 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 91 
856 4 0 |u https://doi.org/10.1007/978-3-319-90572-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)