Analysis for Computer Scientists Foundations, Methods, and Algorithms /

This easy-to-follow textbook/reference presents a concise introduction to mathematical analysis from an algorithmic point of view, with a particular focus on applications of analysis and aspects of mathematical modelling. The text describes the mathematical theory alongside the basic concepts and me...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Oberguggenberger, Michael (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ostermann, Alexander (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Undergraduate Topics in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05163nam a2200541 4500
001 978-3-319-91155-7
003 DE-He213
005 20191024211430.0
007 cr nn 008mamaa
008 181024s2018 gw | s |||| 0|eng d
020 |a 9783319911557  |9 978-3-319-91155-7 
024 7 |a 10.1007/978-3-319-91155-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Oberguggenberger, Michael.  |e author.  |0 (orcid)0000-0002-7340-8651  |1 https://orcid.org/0000-0002-7340-8651  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis for Computer Scientists  |h [electronic resource] :  |b Foundations, Methods, and Algorithms /  |c by Michael Oberguggenberger, Alexander Ostermann. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 378 p. 231 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a Numbers -- Real-Valued Functions -- Trigonometry -- Complex Numbers -- Sequences and Series -- Limits and Continuity of Functions -- The Derivative of a Function -- Applications of the Derivative -- Fractals and L-Systems -- Antiderivatives -- Definite Integrals -- Taylor Series -- Numerical Integration -- Curves -- Scalar-Valued Functions of Two Variables -- Vector-Valued Functions of Two Variables -- Integration of Functions of Two Variables -- Linear Regression -- Differential Equations -- Systems of Differential Equations -- Numerical Solution of Differential Equations -- Appendix A: Vector Algebra -- Appendix B: Matrices -- Appendix C: Further Results on Continuity -- Appendix D: Description of the Supplementary Software. 
520 |a This easy-to-follow textbook/reference presents a concise introduction to mathematical analysis from an algorithmic point of view, with a particular focus on applications of analysis and aspects of mathematical modelling. The text describes the mathematical theory alongside the basic concepts and methods of numerical analysis, enriched by computer experiments using MATLAB, Python, Maple, and Java applets. This fully updated and expanded new edition also features an even greater number of programming exercises. Topics and features: Describes the fundamental concepts in analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives, integrals, and curves Discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations Presents tools from vector and matrix algebra in the appendices, together with further information on continuity Includes added material on hyperbolic functions, curves and surfaces in space, second-order differential equations, and the pendulum equation (NEW) Contains experiments, exercises, definitions, and propositions throughout the text Supplies programming examples in Python, in addition to MATLAB (NEW) Provides supplementary resources at an associated website, including Java applets, code source files, and links to interactive online learning material Addressing the core needs of computer science students and researchers, this clearly written textbook is an essential resource for undergraduate-level courses on numerical analysis, and an ideal self-study tool for professionals seeking to enhance their analysis skills. Dr. Michael Oberguggenberger is a professor in the Unit of Engineering Mathematics at the University of Innsbruck, Austria. Dr. Alexander Ostermann is a professor in the Department of Mathematics at the University of Innsbruck, Austria. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Discrete Mathematics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17028 
700 1 |a Ostermann, Alexander.  |e author.  |0 (orcid)0000-0003-0194-2481  |1 https://orcid.org/0000-0003-0194-2481  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319911540 
776 0 8 |i Printed edition:  |z 9783319911564 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u https://doi.org/10.1007/978-3-319-91155-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)