Periodic Homogenization of Elliptic Systems

This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of co...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shen, Zhongwei (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Advances in Partial Differential Equations, 269
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03034nam a2200481 4500
001 978-3-319-91214-1
003 DE-He213
005 20191027152219.0
007 cr nn 008mamaa
008 180904s2018 gw | s |||| 0|eng d
020 |a 9783319912141  |9 978-3-319-91214-1 
024 7 |a 10.1007/978-3-319-91214-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Shen, Zhongwei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Periodic Homogenization of Elliptic Systems  |h [electronic resource] /  |c by Zhongwei Shen. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a IX, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Partial Differential Equations,  |x 2504-3587 ;  |v 269 
505 0 |a Elliptic Systems of Second Order with Periodic Coeffcients -- Convergence Rates, Part I -- Interior Estimates -- Regularity for Dirichlet Problem -- Regularity for Neumann Problem -- Convergence Rates, Part II -- L2 Estimates in Lipschitz Domains. 
520 |a This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319912134 
776 0 8 |i Printed edition:  |z 9783319912158 
776 0 8 |i Printed edition:  |z 9783030081997 
830 0 |a Advances in Partial Differential Equations,  |x 2504-3587 ;  |v 269 
856 4 0 |u https://doi.org/10.1007/978-3-319-91214-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)