Imaging, Vision and Learning Based on Optimization and PDEs IVLOPDE, Bergen, Norway, August 29 - September 2, 2016 /

This volume presents the peer-reviewed proceedings of the international conference Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE), held in Bergen, Norway, in August/September 2016. The contributions cover state-of-the-art research on mathematical techniques for image processin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tai, Xue-Cheng (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Bae, Egil (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Lysaker, Marius (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathematics and Visualization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05310nam a2200613 4500
001 978-3-319-91274-5
003 DE-He213
005 20191029031913.0
007 cr nn 008mamaa
008 181119s2018 gw | s |||| 0|eng d
020 |a 9783319912745  |9 978-3-319-91274-5 
024 7 |a 10.1007/978-3-319-91274-5  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Imaging, Vision and Learning Based on Optimization and PDEs  |h [electronic resource] :  |b IVLOPDE, Bergen, Norway, August 29 - September 2, 2016 /  |c edited by Xue-Cheng Tai, Egil Bae, Marius Lysaker. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 255 p. 95 illus., 67 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Visualization,  |x 1612-3786 
505 0 |a Part I Image Reconstruction from Incomplete Data: 1 Adaptive Regularization for Image Reconstruction from Subsampled Data: M. Hintermüller et al -- 2 A Convergent Fixed-Point Proximity Algorithm Accelerated by FISTA for the l_0 Sparse Recovery Problem: X. Zeng et al -- 3 Sparse-Data Based 3D Surface Reconstruction for Cartoon and Map: B. Wu et al -- Part II Image Enhancement, Restoration and Registration: 4 Variational Methods for Gamut Mapping in Cinema and Television: S. Waqas Zamir et al -- 5 Functional Lifting for Variational Problems with Higher-Order Regularization: B. Loewenhauser et al -- 6 On the Convex Model of Speckle Reduction: F. Fang et al -- Part III 3D Image Understanding and Classification: 7 Multi-Dimensional Regular Expressions for Object Detection with LiDAR Imaging: T.C. Torgersen et al -- 8 Relaxed Optimisation for Tensor Principal Component Analysis and Applications to Recognition, Compression and Retrieval of Volumetric Shapes: H. Itoh et al -- Part IV Machine Learning and Big Data Analysis: 9 An Incremental Reseeding Strategy for Clustering: X. Bresson et al -- 10 Ego-Motion Classification for Body-Worn Videos: Z. Meng et al -- 11 Synchronized Recovery Method for Multi-Rank Symmetric Tensor Decomposition: H. Liu -- Index. 
520 |a This volume presents the peer-reviewed proceedings of the international conference Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE), held in Bergen, Norway, in August/September 2016. The contributions cover state-of-the-art research on mathematical techniques for image processing, computer vision and machine learning based on optimization and partial differential equations (PDEs). It has become an established paradigm to formulate problems within image processing and computer vision as PDEs, variational problems or finite dimensional optimization problems. This compact yet expressive framework makes it possible to incorporate a range of desired properties of the solutions and to design algorithms based on well-founded mathematical theory. A growing body of research has also approached more general problems within data analysis and machine learning from the same perspective, and demonstrated the advantages over earlier, more established algorithms. This volume will appeal to all mathematicians and computer scientists interested in novel techniques and analytical results for optimization, variational models and PDEs, together with experimental results on applications ranging from early image formation to high-level image and data analysis. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Partial differential equations. 
650 0 |a Computer graphics. 
650 1 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Computer Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22013 
700 1 |a Tai, Xue-Cheng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bae, Egil.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lysaker, Marius.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319912738 
776 0 8 |i Printed edition:  |z 9783319912752 
830 0 |a Mathematics and Visualization,  |x 1612-3786 
856 4 0 |u https://doi.org/10.1007/978-3-319-91274-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)