Text Mining Concepts, Implementation, and Big Data Challenge /

This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jo, Taeho (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Big Data, 45
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03750nam a2200553 4500
001 978-3-319-91815-0
003 DE-He213
005 20191022031302.0
007 cr nn 008mamaa
008 180607s2019 gw | s |||| 0|eng d
020 |a 9783319918150  |9 978-3-319-91815-0 
024 7 |a 10.1007/978-3-319-91815-0  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Jo, Taeho.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Text Mining  |h [electronic resource] :  |b Concepts, Implementation, and Big Data Challenge /  |c by Taeho Jo. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 373 p. 236 illus., 148 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 45 
505 0 |a Part I: Foundation -- Introduction -- Text Indexing -- Text Encoding -- Text Association -- Part II: Text Categorization -- Text Categorization: Conceptual View -- Text Categorization: Approaches -- Text Categorization: Implementation -- Text Categorization: Evaluation -- Part III: Text Clustering -- Text Clustering: Conceptual View -- Text Clustering: Approaches -- Text Clustering: Implementation -- Text Clustering: Evaluation -- Part IV: Advanced Topics -- Text Summarization -- Text Segmentation -- Taxonomy Generation -- Dynamic Document Organization -- References -- Index. 
520 |a This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management. Presents techniques of preprocessing texts into structured forms; Outlines concepts of text categorization and clustering, their algorithms, and implementation guides; Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management. 
650 0 |a Electrical engineering. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Big data. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319918143 
776 0 8 |i Printed edition:  |z 9783319918167 
776 0 8 |i Printed edition:  |z 9783030063023 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 45 
856 4 0 |u https://doi.org/10.1007/978-3-319-91815-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)