Models of Computation for Big Data

The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Akerkar, Rajendra (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03892nam a2200517 4500
001 978-3-319-91851-8
003 DE-He213
005 20191220130317.0
007 cr nn 008mamaa
008 181204s2018 gw | s |||| 0|eng d
020 |a 9783319918518  |9 978-3-319-91851-8 
024 7 |a 10.1007/978-3-319-91851-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 005.1  |2 23 
100 1 |a Akerkar, Rajendra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Models of Computation for Big Data  |h [electronic resource] /  |c by Rajendra Akerkar. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 104 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Advanced Information and Knowledge Processing,  |x 2524-5198 
505 0 |a Preface -- Streaming Models -- Introduction -- Indyk's Algorithm -- Point Query -- Sketching -- Sub-Linear Time Models -- Introduction -- Dimentionality Reduction -- Johnson Lindenstrauss Lower Bound -- Fast Johnson Lindenstrauss Transform -- Sublinear Time Algorithmic Models -- Linear Algebraic Models -- Introduction -- Subspace Embeddings -- Low-Rank Approximation -- The Matrix Completion Problem -- Other Computational Models -- References. 
520 |a The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory. Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity. 
650 0 |a Algorithms. 
650 0 |a Data mining. 
650 0 |a Algebras, Linear. 
650 0 |a Computers. 
650 1 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Linear Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11100 
650 2 4 |a Models and Principles.  |0 http://scigraph.springernature.com/things/product-market-codes/I18016 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319918501 
776 0 8 |i Printed edition:  |z 9783319918525 
830 0 |a SpringerBriefs in Advanced Information and Knowledge Processing,  |x 2524-5198 
856 4 0 |u https://doi.org/10.1007/978-3-319-91851-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)