Invariant Markov Processes Under Lie Group Actions

The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Lévy-Khinchin representation. It interweaves probability theory, topology, and global analysis on...

Full description

Bibliographic Details
Main Author: Liao, Ming (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03863nam a2200529 4500
001 978-3-319-92324-6
003 DE-He213
005 20191025151714.0
007 cr nn 008mamaa
008 180628s2018 gw | s |||| 0|eng d
020 |a 9783319923246  |9 978-3-319-92324-6 
024 7 |a 10.1007/978-3-319-92324-6  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Liao, Ming.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Invariant Markov Processes Under Lie Group Actions  |h [electronic resource] /  |c by Ming Liao. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 363 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Invariant Markov processes under actions of topological groups -- Lévy processes in Lie groups -- Lévy processes in homogeneous spaces -- Lévy processes in compact Lie groups -- Spherical transform and Lévy-Khinchin formula -- Inhomogeneous Lévy processes in Lie groups -- Proofs of main results -- Inhomogenous Lévy processes in homogeneous spaces -- Decomposition of Markov processes -- Appendices -- Bibliography -- Index. 
520 |a The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Lévy-Khinchin representation. It interweaves probability theory, topology, and global analysis on manifolds to present the most recent results in a developing area of stochastic analysis. The author's discussion is structured with three different levels of generality: - A Markov process in a Lie group G that is invariant under the left (or right) translations - A Markov process xt in a manifold X that is invariant under the transitive action of a Lie group G on X - A Markov process xt invariant under the non-transitive action of a Lie group G A large portion of the text is devoted to the representation of inhomogeneous Lévy processes in Lie groups and homogeneous spaces by a time dependent triple through a martingale property. Preliminary definitions and results in both stochastics and Lie groups are provided in a series of appendices, making the book accessible to those who may be non-specialists in either of these areas. Invariant Markov Processes Under Lie Group Actions will be of interest to researchers in stochastic analysis and probability theory, and will also appeal to experts in Lie groups, differential geometry, and related topics interested in applications of their own subjects. 
650 0 |a Probabilities. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319923239 
776 0 8 |i Printed edition:  |z 9783319923253 
776 0 8 |i Printed edition:  |z 9783030064068 
856 4 0 |u https://doi.org/10.1007/978-3-319-92324-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)