Distributions in the Physical and Engineering Sciences, Volume 3 Random and Anomalous Fractional Dynamics in Continuous Media /

Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered founda...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Saichev, Alexander I. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), woyczyński, Wojbor A. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05128nam a2200565 4500
001 978-3-319-92586-8
003 DE-He213
005 20191026171604.0
007 cr nn 008mamaa
008 180803s2018 gw | s |||| 0|eng d
020 |a 9783319925868  |9 978-3-319-92586-8 
024 7 |a 10.1007/978-3-319-92586-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Saichev, Alexander I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Distributions in the Physical and Engineering Sciences, Volume 3  |h [electronic resource] :  |b Random and Anomalous Fractional Dynamics in Continuous Media /  |c by Alexander I. Saichev, Wojbor A. woyczyński. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XX, 403 p. 61 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
505 0 |a Introduction to Volume 3 -- Notation -- Basic Distributional Tools for Probability Theory -- Random Distributions: Generalized Stochastic Processes -- Dynamical and Statistical Characteristics of Random Fields and Waves -- Forced Burgers Turbulence and Passive Tracer Transport in Burgers Flows -- Probability Distributions of Passive Tracers in Randomly Moving Media -- Levy Processes and Their Generalized Derivatives -- Linear Anomalous Fractional Dynamics in Continuous Media -- Nonlinear and Multiscale Anomalous Fractional Dynamics in Continuous Media -- Appendix A: Basic Facts About Distributions -- Bibliography -- Index. 
520 |a Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions. 
650 0 |a Probabilities. 
650 0 |a Engineering mathematics. 
650 0 |a Functional analysis. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Engineering Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/T11030 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
700 1 |a woyczyński, Wojbor A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319925844 
776 0 8 |i Printed edition:  |z 9783319925851 
776 0 8 |i Printed edition:  |z 9783030064679 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
856 4 0 |u https://doi.org/10.1007/978-3-319-92586-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)