Generic Coarse Geometry of Leaves

This book provides a detailed introduction to the coarse quasi-isometry of leaves of a foliated space and describes the cases where the generic leaves have the same quasi-isometric invariants. Every leaf of a compact foliated space has an induced coarse quasi-isometry type, represented by the coarse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Álvarez López, Jesús A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Candel, Alberto (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes in Mathematics, 2223
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03018nam a2200493 4500
001 978-3-319-94132-5
003 DE-He213
005 20191023111759.0
007 cr nn 008mamaa
008 180728s2018 gw | s |||| 0|eng d
020 |a 9783319941325  |9 978-3-319-94132-5 
024 7 |a 10.1007/978-3-319-94132-5  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBMS  |2 thema 
072 7 |a PBPH  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Álvarez López, Jesús A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Generic Coarse Geometry of Leaves  |h [electronic resource] /  |c by Jesús A. Álvarez López, Alberto Candel. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 173 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2223 
520 |a This book provides a detailed introduction to the coarse quasi-isometry of leaves of a foliated space and describes the cases where the generic leaves have the same quasi-isometric invariants. Every leaf of a compact foliated space has an induced coarse quasi-isometry type, represented by the coarse metric defined by the length of plaque chains given by any finite foliated atlas. When there are dense leaves either all dense leaves without holonomy are uniformly coarsely quasi-isometric to each other, or else every leaf is coarsely quasi-isometric to just meagerly many other leaves. Moreover, if all leaves are dense, the first alternative is characterized by a condition on the leaves called coarse quasi-symmetry. Similar results are proved for more specific coarse invariants, like growth type, asymptotic dimension, and amenability. The Higson corona of the leaves is also studied. All the results are richly illustrated with examples. The book is primarily aimed at researchers on foliated spaces. More generally, specialists in geometric analysis, topological dynamics, or metric geometry may also benefit from it. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
700 1 |a Candel, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319941318 
776 0 8 |i Printed edition:  |z 9783319941332 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2223 
856 4 0 |u https://doi.org/10.1007/978-3-319-94132-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)