Heat Transfer Due to Laminar Natural Convection of Nanofluids Theory and Calculation /

This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shang, De-Yi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Zhong, Liang-Cai (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Heat and Mass Transfer,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04848nam a2200589 4500
001 978-3-319-94403-6
003 DE-He213
005 20191220131251.0
007 cr nn 008mamaa
008 180730s2019 gw | s |||| 0|eng d
020 |a 9783319944036  |9 978-3-319-94403-6 
024 7 |a 10.1007/978-3-319-94403-6  |2 doi 
040 |d GrThAP 
050 4 |a QC138-168.86 
050 4 |a QA930 
072 7 |a PHDF  |2 bicssc 
072 7 |a SCI085000  |2 bisacsh 
072 7 |a PHDF  |2 thema 
082 0 4 |a 532  |2 23 
082 0 4 |a 533.62  |2 23 
100 1 |a Shang, De-Yi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Heat Transfer Due to Laminar Natural Convection of Nanofluids  |h [electronic resource] :  |b Theory and Calculation /  |c by De-Yi Shang, Liang-Cai Zhong. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 202 p. 32 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Heat and Mass Transfer,  |x 1860-4846 
505 0 |a Introduction -- Conservation Equations of Fluid Flow -- Partial Differential Equations of Boundary Layer of Nanofluid's Natural Convection -- Ordinary Differential Equations of Boundary Layer of Nanofluid's Natural Convection -- Mathematical Model of Variable Physical Properties of Nanofluids -- Numerical Solutions of Velocity and Temperature Fields -- Skin-Friction Coefficient -- Predictive Formula of Wall Temperature Gradient -- Predictive Formulae on Heat Transfer of Al2O3-Water Nanofluid's Natural Convection -- Calculation Examples by Using the Predictive Formulae on Heat Transfer -- Conversion Factors on Heat Transfer of Nanofluid's Natural Convection -- Numerical Simulation of Conversion Factors on Heat Transfer -- Conversion Formulae on of Heat Transfer of Al2O3-Water Nanofluid's Natural Convection -- Calculation Examples on Heat Transfer by Using Conversion Formulae -- Postscript. 
520 |a This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid's natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae. 
650 0 |a Fluids. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Energy systems. 
650 1 4 |a Fluid- and Aerodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21026 
650 2 4 |a Thermodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21050 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer.  |0 http://scigraph.springernature.com/things/product-market-codes/T14000 
650 2 4 |a Energy Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/115000 
700 1 |a Zhong, Liang-Cai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319944029 
776 0 8 |i Printed edition:  |z 9783319944043 
776 0 8 |i Printed edition:  |z 9783030068455 
830 0 |a Heat and Mass Transfer,  |x 1860-4846 
856 4 0 |u https://doi.org/10.1007/978-3-319-94403-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)