Orthogonal Latin Squares Based on Groups

This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall-Paige conjecture. The use of latin squares in construct...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Evans, Anthony B. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Developments in Mathematics, 57
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Introduction
  • Latin Squares Based on Groups
  • When is a Latin Square Based on a Group?
  • Part II Admissable Groups
  • The Existence Problem for Complete Mappings: The Hall-Paige Conjecture
  • Some Classes of Admissible Groups
  • The Groups GL(n,q), SL(n,q), PGL(n,q), and PSL(n,q)
  • Minimal Counterexamples to the Hall-Paige Conjecture
  • A Proof of the Hall-Paige Conjecture
  • Part III Orthomorphism Graphs of Groups
  • Orthomorphism Graphs of Groups
  • Elementary Abelian Groups I
  • Elementary Abelian Groups II
  • Extensions of Orthomorphism Graphs
  • ω(G) for Some Classes of Nonabelian Groups
  • Groups of Small Order
  • Part IV Additional Topics
  • Projective Planes from Complete Sets of Orthomorphisms
  • Related Topics
  • Problems
  • References
  • Index.