Neural Networks and Deep Learning A Textbook /

This book covers both classical and modern models in deep learning. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on under...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Aggarwal, Charu C. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03745nam a2200481 4500
001 978-3-319-94463-0
003 DE-He213
005 20191023212738.0
007 cr nn 008mamaa
008 180825s2018 gw | s |||| 0|eng d
020 |a 9783319944630  |9 978-3-319-94463-0 
024 7 |a 10.1007/978-3-319-94463-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Aggarwal, Charu C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks and Deep Learning  |h [electronic resource] :  |b A Textbook /  |c by Charu C. Aggarwal. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXIII, 497 p. 139 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 An Introduction to Neural Networks -- 2 Machine Learning with Shallow Neural Networks -- 3 Training Deep Neural Networks -- 4 Teaching Deep Learners to Generalize -- 5 Radical Basis Function Networks -- 6 Restricted Boltzmann Machines -- 7 Recurrent Neural Networks -- 8 Convolutional Neural Networks -- 9 Deep Reinforcement Learning -- 10 Advanced Topics in Deep Learning. 
520 |a This book covers both classical and modern models in deep learning. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Microprocessors. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
650 2 4 |a Processor Architectures.  |0 http://scigraph.springernature.com/things/product-market-codes/I13014 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319944623 
776 0 8 |i Printed edition:  |z 9783319944647 
776 0 8 |i Printed edition:  |z 9783030068561 
856 4 0 |u https://doi.org/10.1007/978-3-319-94463-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)