From Classical to Modern Analysis

This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration. Designed for a two-semester introduction to real analysis, the text gi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schinazi, Rinaldo B. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03857nam a2200481 4500
001 978-3-319-94583-5
003 DE-He213
005 20191025111312.0
007 cr nn 008mamaa
008 180921s2018 gw | s |||| 0|eng d
020 |a 9783319945835  |9 978-3-319-94583-5 
024 7 |a 10.1007/978-3-319-94583-5  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Schinazi, Rinaldo B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Classical to Modern Analysis  |h [electronic resource] /  |c by Rinaldo B. Schinazi. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XII, 270 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Real Numbers -- Sequences of Real Numbers -- Limits Superior and Inferior of a Sequence -- Numerical Series -- Convergence of Functions -- Power Series -- Metric Spaces -- Topology in a Metric Space -- Continuity on Metric Spaces -- Measurable Sets and Measurable Functions -- Measures -- The Lebesgue Integral -- Integrals with Respect to Counting Measures -- Riemann and Lebesgue Integrals -- Modes of Convergance -- References. 
520 |a This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration. Designed for a two-semester introduction to real analysis, the text gives special attention to metric spaces and topology to familiarize students with the level of abstraction and mathematical rigor needed for graduate study in real analysis. Fitting in between analysis textbooks that are too formal or too casual, From Classical to Modern Analysis is a comprehensive, yet straightforward, resource for studying real analysis. To build the foundational elements of real analysis, the first seven chapters cover number systems, convergence of sequences and series, as well as more advanced topics like superior and inferior limits, convergence of functions, and metric spaces. Chapters 8 through 12 explore topology in and continuity on metric spaces and introduce the Lebesgue integrals. The last chapters are largely independent and discuss various applications of the Lebesgue integral. Instructors who want to demonstrate the uses of measure theory and explore its advanced applications with their undergraduate students will find this textbook an invaluable resource. Advanced single-variable calculus and a familiarity with reading and writing mathematical proofs are all readers will need to follow the text. Graduate students can also use this self-contained and comprehensive introduction to real analysis for self-study and review. . 
650 0 |a Functional analysis. 
650 0 |a Functions of real variables. 
650 0 |a Measure theory. 
650 1 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
650 2 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319945828 
776 0 8 |i Printed edition:  |z 9783319945842 
776 0 8 |i Printed edition:  |z 9783030068790 
856 4 0 |u https://doi.org/10.1007/978-3-319-94583-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)