Imaginary Mathematics for Computer Science

The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the un...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Vince, John (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04060nam a2200445 4500
001 978-3-319-94637-5
003 DE-He213
005 20191220125556.0
007 cr nn 008mamaa
008 180816s2018 gw | s |||| 0|eng d
020 |a 9783319946375  |9 978-3-319-94637-5 
024 7 |a 10.1007/978-3-319-94637-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Vince, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Imaginary Mathematics for Computer Science  |h [electronic resource] /  |c by John Vince. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 301 p. 99 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Complex Numbers -- Matrix Algebra -- Quaternions -- Octonions -- Geometric Algebra -- Trigonometric Identities using Complex Numbers -- Combining Waves using Complex Numbers -- Circuit Analysis using Complex Numbers -- Geometry Using Geometric Algebra -- Rotating Vectors using Quaternions -- Complex Numbers and the Riemann Hypothesis -- The Mandelbrot Set -- Conclusion -- Index. 
520 |a The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton's invention of quaternions, and Cayley's development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger's famous wave equation. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319946368 
776 0 8 |i Printed edition:  |z 9783319946382 
776 0 8 |i Printed edition:  |z 9783030068875 
856 4 0 |u https://doi.org/10.1007/978-3-319-94637-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)