A History of Abstract Algebra From Algebraic Equations to Modern Algebra /

This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gray, Jeremy (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04782nam a2200505 4500
001 978-3-319-94773-0
003 DE-He213
005 20191023222556.0
007 cr nn 008mamaa
008 180807s2018 gw | s |||| 0|eng d
020 |a 9783319947730  |9 978-3-319-94773-0 
024 7 |a 10.1007/978-3-319-94773-0  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
072 7 |a PBX  |2 thema 
082 0 4 |a 510.9  |2 23 
100 1 |a Gray, Jeremy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A History of Abstract Algebra  |h [electronic resource] :  |b From Algebraic Equations to Modern Algebra /  |c by Jeremy Gray. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXIV, 415 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Introduction -- 1 Simple quadratic forms -- 2 Fermat's Last Theorem -- 3 Lagrange's theory of quadratic forms -- 4 Gauss's Disquisitiones Arithmeticae -- 5 Cyclotomy -- 6 Two of Gauss's proofs of quadratic reciprocity -- 7 Dirichlet's Lectures -- 8 Is the quintic unsolvable? -- 9 The unsolvability of the quintic -- 10 Galois's theory -- 11 After Galois - Introduction -- 12 Revision and first assignment -- 13 Jordan's Traité -- 14 Jordan and Klein -- 15 What is 'Galois theory'? -- 16 Algebraic number theory: cyclotomy -- 17 Dedekind's first theory of ideals -- 18 Dedekind's later theory of ideals -- 19 Quadratic forms and ideals -- 20 Kronecker's algebraic number theory -- 21 Revision and second assignment -- 22 Algebra at the end of the 19th century -- 23 The concept of an abstract field -- 24 Ideal theory -- 25 Invariant theory -- 26 Hilbert's Zahlbericht -- 27 The rise of modern algebra - group theory -- 28 Emmy Noether -- 29 From Weber to van der Waerden -- 30 Revision and final assignment -- A Polynomial equations in the 18th Century -- B Gauss and composition of forms -- C Gauss on quadratic reciprocity -- D From Jordan's Traité -- E Klein's Erlanger Programm -- F From Dedekind's 11th supplement -- G Subgroups of S4 and S5 -- H Curves -- I Resultants -- Bibliography -- Index. 
520 |a This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss's theory of numbers and Galois's ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat's Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois's approach to the solution of equations. The book also describes the relationship between Kummer's ideal numbers and Dedekind's ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer's. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study. . 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Algebra. 
650 0 |a Number theory. 
650 1 4 |a History of Mathematical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M23009 
650 2 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319947723 
776 0 8 |i Printed edition:  |z 9783319947747 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u https://doi.org/10.1007/978-3-319-94773-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)