Managing Data From Knowledge Bases: Querying and Extraction

In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhang, Wei Emma (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Sheng, Quan Z. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04884nam a2200505 4500
001 978-3-319-94935-2
003 DE-He213
005 20200222132649.0
007 cr nn 008mamaa
008 180731s2018 gw | s |||| 0|eng d
020 |a 9783319949352  |9 978-3-319-94935-2 
024 7 |a 10.1007/978-3-319-94935-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Zhang, Wei Emma.  |e author.  |0 (orcid)0000-0002-0406-5974  |1 https://orcid.org/0000-0002-0406-5974  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Managing Data From Knowledge Bases: Querying and Extraction  |h [electronic resource] /  |c by Wei Emma Zhang, Quan Z. Sheng. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 139 p. 41 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Cache Based Optimization for Querying Curated Knowledge Bases -- 3 Query Performance Prediction on Knowledge Base -- 4 An Efficient Knowledge Clustering Algorithm -- 5 Knowledge Extraction from Unstructured Data on the Web -- 6 Building Knowledge Bases from Unstructured Data on the Web -- 7 Conclusion. 
520 |a In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual's historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries' structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system. To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance. For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Application software. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Information Systems Applications (incl. Internet).  |0 http://scigraph.springernature.com/things/product-market-codes/I18040 
700 1 |a Sheng, Quan Z.  |e author.  |0 (orcid)0000-0002-3326-4147  |1 https://orcid.org/0000-0002-3326-4147  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319949345 
776 0 8 |i Printed edition:  |z 9783319949369 
776 0 8 |i Printed edition:  |z 9783030069407 
856 4 0 |u https://doi.org/10.1007/978-3-319-94935-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)