Machine Learning A Practical Approach on the Statistical Learning Theory /

This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concep...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: F MELLO, RODRIGO (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Antonelli Ponti, Moacir (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04001nam a2200529 4500
001 978-3-319-94989-5
003 DE-He213
005 20191220130834.0
007 cr nn 008mamaa
008 180801s2018 gw | s |||| 0|eng d
020 |a 9783319949895  |9 978-3-319-94989-5 
024 7 |a 10.1007/978-3-319-94989-5  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a F MELLO, RODRIGO.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning  |h [electronic resource] :  |b A Practical Approach on the Statistical Learning Theory /  |c by RODRIGO F MELLO, Moacir Antonelli Ponti. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 362 p. 190 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1 - A Brief Review on Machine Learning -- Chapter 2 - Statistical Learning Theory -- Chapter 3 - Assessing Learning Algorithms -- Chapter 4 - Introduction to Support Vector Machines -- Chapter 5 - In Search for the Optimization Algorithm -- Chapter 6 - A Brief Introduction on Kernels -- . 
520 |a This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Statistics . 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Mathematical Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/M13110 
650 2 4 |a Applied Statistics.  |0 http://scigraph.springernature.com/things/product-market-codes/S17000 
700 1 |a Antonelli Ponti, Moacir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319949888 
776 0 8 |i Printed edition:  |z 9783319949901 
776 0 8 |i Printed edition:  |z 9783030069490 
856 4 0 |u https://doi.org/10.1007/978-3-319-94989-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)