Data Science Thinking The Next Scientific, Technological and Economic Revolution /

This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cao, Longbing (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Data Analytics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04434nam a2200517 4500
001 978-3-319-95092-1
003 DE-He213
005 20190703151114.0
007 cr nn 008mamaa
008 180817s2018 gw | s |||| 0|eng d
020 |a 9783319950921  |9 978-3-319-95092-1 
024 7 |a 10.1007/978-3-319-95092-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Cao, Longbing.  |e author.  |0 (orcid)0000-0002-2396-0405  |1 https://orcid.org/0000-0002-2396-0405  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Science Thinking  |h [electronic resource] :  |b The Next Scientific, Technological and Economic Revolution /  |c by Longbing Cao. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 390 p. 62 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Data Analytics,  |x 2520-1859 
505 0 |a 1 The Data Science Era -- 2 What is Data Science -- 3 Data Science Thinking -- 4 Data Science Challenges -- 5 Data Science Discipline -- 6 Data Science Foundations -- 7 Data Science Techniques -- 8 Data Economy and Industrialization -- 9 Data Science Applications -- 10 Data Profession -- 11 Data Science Education -- 12 Prospects and Opportunities in Data Science. 
520 |a This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. The topics cover an extremely wide spectrum of essential and relevant aspects of data science, spanning its evolution, concepts, thinking, challenges, discipline, and foundation, all the way to industrialization, profession, education, and the vast array of opportunities that data science offers. The book's three parts each detail layers of these different aspects. The book is intended for decision-makers, data managers (e.g., analytics portfolio managers, business analytics managers, chief data analytics officers, chief data scientists, and chief data officers), policy makers, management and decision strategists, research leaders, and educators who are responsible for pursuing new scientific, innovation, and industrial transformation agendas, enterprise strategic planning, a next-generation profession-oriented course development, as well as those who are involved in data science, technology, and economy from an advanced perspective. Research students in data science-related courses and disciplines will find the book useful for positing their innovative scientific journey, planning their unique and promising career, and competing within and being ready for the next generation of science, technology, and economy. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319950914 
776 0 8 |i Printed edition:  |z 9783319950938 
776 0 8 |i Printed edition:  |z 9783030069759 
830 0 |a Data Analytics,  |x 2520-1859 
856 4 0 |u https://doi.org/10.1007/978-3-319-95092-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)