Neural Advances in Processing Nonlinear Dynamic Signals

This book proposes neural networks algorithms and advanced machine learning techniques for processing nonlinear dynamic signals such as audio, speech, financial signals, feedback loops, waveform generation, filtering, equalization, signals from arrays of sensors, and perturbations in the automatic c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Esposito, Anna (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Faundez-Zanuy, Marcos (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Morabito, Francesco Carlo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Pasero, Eros (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Smart Innovation, Systems and Technologies, 102
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04505nam a2200541 4500
001 978-3-319-95098-3
003 DE-He213
005 20191027121418.0
007 cr nn 008mamaa
008 180721s2019 gw | s |||| 0|eng d
020 |a 9783319950983  |9 978-3-319-95098-3 
024 7 |a 10.1007/978-3-319-95098-3  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Neural Advances in Processing Nonlinear Dynamic Signals  |h [electronic resource] /  |c edited by Anna Esposito, Marcos Faundez-Zanuy, Francesco Carlo Morabito, Eros Pasero. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 318 p. 91 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Smart Innovation, Systems and Technologies,  |x 2190-3018 ;  |v 102 
505 0 |a Processing Nonlinearities -- Temporal Artifacts from Edge Accumulation in Social Interaction -- Data Mining by Evolving Agents for Clusters Discovery and Metric Learning -- Error Resilient Neural Networks on Low-Dimensional Manifolds -- On 4-Dimensional Hypercomplex Algebras in Adaptive Signal Processing -- Growing Curvilinear Component Analysis (GCCA) for Stator Fault Detection in Induction Machines -- Convolutional Neural Networks for the Identification of Filaments from Fast Visual Imaging Cameras in Tokamak Reactors -- Appraisal of Enhanced Surrogate Models for Substrate Integrate Waveguide Devices Characterization -- An Improved PSO for Flexible Parameters Identification of Lithium Cells Equivalent Circuit Models -- New Challenges in Pension Industry: Proposals of Personal Pension Products -- A Method Based on OWA Operator for Scientific Research Evaluation -- A Cluster Analysis Approach for Rule Base Reduction. 
520 |a This book proposes neural networks algorithms and advanced machine learning techniques for processing nonlinear dynamic signals such as audio, speech, financial signals, feedback loops, waveform generation, filtering, equalization, signals from arrays of sensors, and perturbations in the automatic control of industrial production processes. It also discusses the drastic changes in financial, economic, and work processes that are currently being experienced by the computational and engineering sciences community. Addresses key aspects, such as the integration of neural algorithms and procedures for the recognition, the analysis and detection of dynamic complex structures and the implementation of systems for discovering patterns in data, the book highlights the commonalities between computational intelligence (CI) and information and communications technologies (ICT) to promote transversal skills and sophisticated processing techniques. This book is a valuable resource for a. The academic research community b. The ICT market c. PhD students and early stage researchers d. Companies, research institutes e. Representatives from industry and standardization bodies. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Computational complexity. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
700 1 |a Esposito, Anna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Faundez-Zanuy, Marcos.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Morabito, Francesco Carlo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pasero, Eros.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319950976 
776 0 8 |i Printed edition:  |z 9783319950990 
776 0 8 |i Printed edition:  |z 9783030069773 
830 0 |a Smart Innovation, Systems and Technologies,  |x 2190-3018 ;  |v 102 
856 4 0 |u https://doi.org/10.1007/978-3-319-95098-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)