The Kurzweil-Henstock Integral for Undergraduates A Promenade Along the Marvelous Theory of Integration /

This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically v...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fonda, Alessandro (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Compact Textbooks in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02839nam a2200469 4500
001 978-3-319-95321-2
003 DE-He213
005 20191028192638.0
007 cr nn 008mamaa
008 181111s2018 gw | s |||| 0|eng d
020 |a 9783319953212  |9 978-3-319-95321-2 
024 7 |a 10.1007/978-3-319-95321-2  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKB  |2 thema 
082 0 4 |a 515.8  |2 23 
100 1 |a Fonda, Alessandro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Kurzweil-Henstock Integral for Undergraduates   |h [electronic resource] :  |b A Promenade Along the Marvelous Theory of Integration /  |c by Alessandro Fonda. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a X, 216 p. 24 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-4568 
505 0 |a Functions of one real variable -- Functions of several real variables -- Differential forms -- Differential calculus in RN -- The Stokes-Cartan and the Poincaré theorems -- On differentiable manifolds -- The Banach-Tarski paradox -- A brief historical note. 
520 |a This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically viewable, are more easy to be understood. The theory is developed also for functions of several variables, and for differential forms, as well, finally leading to the celebrated Stokes-Cartan formula. In the appendices, differential calculus in RN is reviewed, with the theory of differentiable manifolds. Also, the Banach-Tarski paradox is presented here, with a complete proof, a rather peculiar argument for this type of monographs. 
650 0 |a Functions of real variables. 
650 0 |a Measure theory. 
650 1 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
650 2 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319953205 
776 0 8 |i Printed edition:  |z 9783319953229 
830 0 |a Compact Textbooks in Mathematics,  |x 2296-4568 
856 4 0 |u https://doi.org/10.1007/978-3-319-95321-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)