Numerical and Evolutionary Optimization - NEO 2017

This book features 15 chapters based on the Numerical and Evolutionary Optimization (NEO 2017) workshop, held from September 27 to 29 in the city of Tijuana, Mexico. The event gathered researchers from two complimentary fields to discuss the theory, development and application of state-of-the-art te...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Trujillo, Leonardo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Schütze, Oliver (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Maldonado, Yazmin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Valle, Paul (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Computational Intelligence, 785
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04385nam a2200517 4500
001 978-3-319-96104-0
003 DE-He213
005 20191022172809.0
007 cr nn 008mamaa
008 180712s2019 gw | s |||| 0|eng d
020 |a 9783319961040  |9 978-3-319-96104-0 
024 7 |a 10.1007/978-3-319-96104-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Numerical and Evolutionary Optimization - NEO 2017  |h [electronic resource] /  |c edited by Leonardo Trujillo, Oliver Schütze, Yazmin Maldonado, Paul Valle. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 312 p. 137 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 785 
505 0 |a Deterministic Parameter Control in Differential Evolution with Combined Variants for Constrained Search Spaces -- A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems -- Evaluating Memetic Building Spatial Design Optimisation Using Hypervolume Indicator Gradient Ascent -- Fitting Multiple Ellipses with PEARL and a Multi-objective Genetic Algorithm -- Analyzing Evolutionary Art Audience Interaction by Means of a Kinect Based Non-Intrusive Method -- Applying Control Theory to Optimize the Inventory Holding Costs in Supply Chains -- On the Selection of Tuning Parameters in Predictive Controllers Based on NSGA-II -- IDA-PBC Controller Tuning Using Steepest Descent -- Self-Tuning for a SISO-Type Fuzzy Control Based on the Relay Feedback Approach -- Optimal Design Of Sliding Mode Control Combined with Positive Position Feedback -- Biot's Parameters Estimation In Ultrasound Propagation Through Cancellous Bone -- Optimal Sizing of Low-DropOut Voltage Regulators by NSGA-II and PVT Analysis -- Genetic Optimization of Fuzzy Systems for the Classification of Treated Water Quality -- Stabilization Based on Fuzzy System for Structures Affected by External Disturbances -- Comparison of Two Methods for I/Q Imbalance Compensation Applied in RF Power Amplifiers -- An Application of Data Envelopment Analysis to the Performance Assessment of Online Social Networks Usage in Mazatlan Hotel Organizations. . 
520 |a This book features 15 chapters based on the Numerical and Evolutionary Optimization (NEO 2017) workshop, held from September 27 to 29 in the city of Tijuana, Mexico. The event gathered researchers from two complimentary fields to discuss the theory, development and application of state-of-the-art techniques to address search and optimization problems. The lively event included 7 invited talks and 64 regular talks covering a wide range of topics, from evolutionary computer vision and machine learning with evolutionary computation, to set oriented numeric and steepest descent techniques. Including research submitted by the NEO community, the book provides informative and stimulating material for future research in the field. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Trujillo, Leonardo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Schütze, Oliver.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maldonado, Yazmin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Valle, Paul.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319961033 
776 0 8 |i Printed edition:  |z 9783319961057 
776 0 8 |i Printed edition:  |z 9783030071448 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 785 
856 4 0 |u https://doi.org/10.1007/978-3-319-96104-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)