Universal Coding and Order Identification by Model Selection Methods

The purpose of these notes is to highlight the far-reaching connections between Information Theory and Statistics. Universal coding and adaptive compression are indeed closely related to statistical inference concerning processes and using maximum likelihood or Bayesian methods. The book is divided...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gassiat, Élisabeth (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04206nam a2200517 4500
001 978-3-319-96262-7
003 DE-He213
005 20191025041930.0
007 cr nn 008mamaa
008 180728s2018 gw | s |||| 0|eng d
020 |a 9783319962627  |9 978-3-319-96262-7 
024 7 |a 10.1007/978-3-319-96262-7  |2 doi 
040 |d GrThAP 
050 4 |a QA268 
050 4 |a Q350-390 
072 7 |a GPJ  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a GPJ  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 003.54  |2 23 
100 1 |a Gassiat, Élisabeth.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Universal Coding and Order Identification by Model Selection Methods  |h [electronic resource] /  |c by Élisabeth Gassiat. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 146 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a 1. Lossless Coding -- 2.Universal Coding on Finite Alphabets -- 3.Universal Coding on Infinite Alphabets -- 4.Model Order Estimation -- Notation -- Index. 
520 |a The purpose of these notes is to highlight the far-reaching connections between Information Theory and Statistics. Universal coding and adaptive compression are indeed closely related to statistical inference concerning processes and using maximum likelihood or Bayesian methods. The book is divided into four chapters, the first of which introduces readers to lossless coding, provides an intrinsic lower bound on the codeword length in terms of Shannon's entropy, and presents some coding methods that can achieve this lower bound, provided the source distribution is known. In turn, Chapter 2 addresses universal coding on finite alphabets, and seeks to find coding procedures that can achieve the optimal compression rate, regardless of the source distribution. It also quantifies the speed of convergence of the compression rate to the source entropy rate. These powerful results do not extend to infinite alphabets. In Chapter 3, it is shown that there are no universal codes over the class of stationary ergodic sources over a countable alphabet. This negative result prompts at least two different approaches: the introduction of smaller sub-classes of sources known as envelope classes, over which adaptive coding may be feasible, and the redefinition of the performance criterion by focusing on compressing the message pattern. Finally, Chapter 4 deals with the question of order identification in statistics. This question belongs to the class of model selection problems and arises in various practical situations in which the goal is to identify an integer characterizing the model: the length of dependency for a Markov chain, number of hidden states for a hidden Markov chain, and number of populations for a population mixture. The coding ideas and techniques developed in previous chapters allow us to obtain new results in this area. This book is accessible to anyone with a graduate level in Mathematics, and will appeal to information theoreticians and mathematical statisticians alike. Except for Chapter 4, all proofs are detailed and all tools needed to understand the text are reviewed. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Statistics . 
650 1 4 |a Coding and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15041 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319962610 
776 0 8 |i Printed edition:  |z 9783319962634 
776 0 8 |i Printed edition:  |z 9783030071677 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://doi.org/10.1007/978-3-319-96262-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)