Causation in Population Health Informatics and Data Science

Marketing text: This book covers the overlap between informatics, computer science, philosophy of causation, and causal inference in epidemiology and population health research. Key concepts covered include how data are generated and interpreted, and how and why concepts in health informatics and th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dammann, Olaf (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Smart, Benjamin (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03047nam a2200517 4500
001 978-3-319-96307-5
003 DE-He213
005 20191026102134.0
007 cr nn 008mamaa
008 181029s2019 gw | s |||| 0|eng d
020 |a 9783319963075  |9 978-3-319-96307-5 
024 7 |a 10.1007/978-3-319-96307-5  |2 doi 
040 |d GrThAP 
050 4 |a R858-859.7 
072 7 |a MBG  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
072 7 |a MBG  |2 thema 
072 7 |a UB  |2 thema 
082 0 4 |a 502.85  |2 23 
100 1 |a Dammann, Olaf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Causation in Population Health Informatics and Data Science  |h [electronic resource] /  |c by Olaf Dammann, Benjamin Smart. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 134 p. 15 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Data Interpretation -- Data Generation -- Informatics -- Philosophy -- Causal inference -- Knowledge Integration -- Systems Thinking -- Summary and conclusion. 
520 |a Marketing text: This book covers the overlap between informatics, computer science, philosophy of causation, and causal inference in epidemiology and population health research. Key concepts covered include how data are generated and interpreted, and how and why concepts in health informatics and the philosophy of science should be integrated in a systems-thinking approach. Furthermore, a formal epistemology for the health sciences and public health is suggested. Causation in Population Health Informatics and Data Science provides a detailed guide of the latest thinking on causal inference in population health informatics. It is therefore a critical resource for all informaticians and epidemiologists interested in the potential benefits of utilising a systems-based approach to causal inference in health informatics. 
650 0 |a Health informatics. 
650 0 |a Logic. 
650 0 |a Epidemiology. 
650 1 4 |a Health Informatics.  |0 http://scigraph.springernature.com/things/product-market-codes/H28009 
650 2 4 |a Health Informatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23060 
650 2 4 |a Logic.  |0 http://scigraph.springernature.com/things/product-market-codes/E16000 
650 2 4 |a Epidemiology.  |0 http://scigraph.springernature.com/things/product-market-codes/H63000 
700 1 |a Smart, Benjamin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319963068 
776 0 8 |i Printed edition:  |z 9783319963082 
776 0 8 |i Printed edition:  |z 9783030071745 
856 4 0 |u https://doi.org/10.1007/978-3-319-96307-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SME 
950 |a Medicine (Springer-11650)