Supervised Learning with Quantum Computers

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schuld, Maria (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Petruccione, Francesco (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Quantum Science and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04642nam a2200589 4500
001 978-3-319-96424-9
003 DE-He213
005 20191024091035.0
007 cr nn 008mamaa
008 180830s2018 gw | s |||| 0|eng d
020 |a 9783319964249  |9 978-3-319-96424-9 
024 7 |a 10.1007/978-3-319-96424-9  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Schuld, Maria.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Supervised Learning with Quantum Computers  |h [electronic resource] /  |c by Maria Schuld, Francesco Petruccione. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 287 p. 83 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Quantum Science and Technology,  |x 2364-9054 
505 0 |a Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References. 
520 |a Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices. 
650 0 |a Quantum physics. 
650 0 |a Quantum computers. 
650 0 |a Pattern recognition. 
650 0 |a Spintronics. 
650 0 |a Physics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Quantum Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19080 
650 2 4 |a Quantum Computing.  |0 http://scigraph.springernature.com/things/product-market-codes/M14070 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Quantum Information Technology, Spintronics.  |0 http://scigraph.springernature.com/things/product-market-codes/P31070 
650 2 4 |a Numerical and Computational Physics, Simulation.  |0 http://scigraph.springernature.com/things/product-market-codes/P19021 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Petruccione, Francesco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319964232 
776 0 8 |i Printed edition:  |z 9783319964256 
776 0 8 |i Printed edition:  |z 9783030071882 
830 0 |a Quantum Science and Technology,  |x 2364-9054 
856 4 0 |u https://doi.org/10.1007/978-3-319-96424-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)