Supervised Learning with Quantum Computers

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schuld, Maria (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Petruccione, Francesco (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Quantum Science and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Background
  • How quantum computers can classify data
  • Organisation of the book
  • Machine Learning
  • Prediction
  • Models
  • Training
  • Methods in machine learning
  • Quantum Information
  • Introduction to quantum theory
  • Introduction to quantum computing
  • An example: The Deutsch-Josza algorithm
  • Strategies of information encoding
  • Important quantum routines
  • Quantum advantages
  • Computational complexity of learning
  • Sample complexity
  • Model complexity
  • Information encoding
  • Basis encoding
  • Amplitude encoding
  • Qsample encoding
  • Hamiltonian encoding
  • Quantum computing for inference
  • Linear models
  • Kernel methods
  • Probabilistic models
  • Quantum computing for training
  • Quantum blas
  • Search and amplitude amplification
  • Hybrid training for variational algorithms
  • Quantum adiabatic machine learning
  • Learning with quantum models
  • Quantum extensions of Ising-type models
  • Variational classifiers and neural networks
  • Other approaches to build quantum models
  • Prospects for near-term quantum machine learning
  • Small versus big data
  • Hybrid versus fully coherent approaches
  • Qualitative versus quantitative advantages
  • What machine learning can do for quantum computing
  • References.