Machine Learning for Dynamic Software Analysis: Potentials and Limits International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /

Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software sy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bennaceur, Amel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hähnle, Reiner (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Meinke, Karl (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Programming and Software Engineering ; 11026
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03898nam a2200541 4500
001 978-3-319-96562-8
003 DE-He213
005 20191026002445.0
007 cr nn 008mamaa
008 180720s2018 gw | s |||| 0|eng d
020 |a 9783319965628  |9 978-3-319-96562-8 
024 7 |a 10.1007/978-3-319-96562-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
072 7 |a UMZ  |2 thema 
072 7 |a UL  |2 thema 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Machine Learning for Dynamic Software Analysis: Potentials and Limits  |h [electronic resource] :  |b International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /  |c edited by Amel Bennaceur, Reiner Hähnle, Karl Meinke. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a IX, 257 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Programming and Software Engineering ;  |v 11026 
505 0 |a Introduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches. 
520 |a Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. 
650 0 |a Software engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 1 4 |a Software Engineering/Programming and Operating Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/I14002 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
700 1 |a Bennaceur, Amel.  |e editor.  |0 (orcid)0000-0002-6124-9622  |1 https://orcid.org/0000-0002-6124-9622  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hähnle, Reiner.  |e editor.  |0 (orcid)0000-0001-8000-7613  |1 https://orcid.org/0000-0001-8000-7613  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Meinke, Karl.  |e editor.  |0 (orcid)0000-0002-9706-5008  |1 https://orcid.org/0000-0002-9706-5008  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319965611 
776 0 8 |i Printed edition:  |z 9783319965635 
830 0 |a Programming and Software Engineering ;  |v 11026 
856 4 0 |u https://doi.org/10.1007/978-3-319-96562-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)