|
|
|
|
LEADER |
05007nam a2200517 4500 |
001 |
978-3-319-96664-9 |
003 |
DE-He213 |
005 |
20191220125556.0 |
007 |
cr nn 008mamaa |
008 |
180828s2018 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319966649
|9 978-3-319-96664-9
|
024 |
7 |
|
|a 10.1007/978-3-319-96664-9
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC174.7-175.36
|
072 |
|
7 |
|a PHS
|2 bicssc
|
072 |
|
7 |
|a SCI040000
|2 bisacsh
|
072 |
|
7 |
|a PHS
|2 thema
|
082 |
0 |
4 |
|a 530.1
|2 23
|
100 |
1 |
|
|a Gupta, Shamik.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Statistical Physics of Synchronization
|h [electronic resource] /
|c by Shamik Gupta, Alessandro Campa, Stefano Ruffo.
|
250 |
|
|
|a 1st ed. 2018.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2018.
|
300 |
|
|
|a XVI, 121 p. 32 illus., 27 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Complexity,
|x 2191-5326
|
505 |
0 |
|
|a Synchronizing systems -- Introduction -- The oscillators and their interaction: A qualitative discussion -- Oscillators as limit cycles -- Interacting limit-cycle oscillators -- Synchronizing systems as statistical mechanical systems -- The features of a statistical physical description -- Some results for noiseless interacting oscillators -- The oscillators with inertia -- Appendix 1: A two-dimensional dynamics with a limit-cycle attractor -- Appendix 2: The Lyapunov exponents -- Appendix 3: The one-body distribution function in an N-body system -- Oscillators with first-order dynamics -- The oscillators with distributed natural frequencies -- The Kuramoto model -- Unimodal symmetric g(w) -- Nonunimodal g(w) -- Appendix 1: An H-theorem for a particular simple case -- Appendix 2: Form of the function r(K) for symmetric and unimodal frequency distributions in the Kuramoto model -- Appendix 3: The numerical solution of Eq. (2.34) -- Oscillators with second-order dynamics -- Generalized Kuramoto model with inertia and noise -- Nonequilibrium first-order synchronization phase transition: Simulation results -- Analysis in the continuum limit: The Kramers equation -- Phase diagram: Comparison with numeric -- Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models -- Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance -- Appendix 3: Simulation details for the dynamics (3.9) -- Appendix 4: Derivation of the Kramers equation -- Appendix 5: Nature of solutions of Eq. (3.32) -- Appendix 6: Solution of the system of equations (3.39) -- Appendix 7: Convergence properties of the expansion (3.38).
|
520 |
|
|
|a This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.
|
650 |
|
0 |
|a Statistical physics.
|
650 |
|
0 |
|a Computational complexity.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
1 |
4 |
|a Statistical Physics and Dynamical Systems.
|0 http://scigraph.springernature.com/things/product-market-codes/P19090
|
650 |
2 |
4 |
|a Complexity.
|0 http://scigraph.springernature.com/things/product-market-codes/T11022
|
650 |
2 |
4 |
|a Mathematical Physics.
|0 http://scigraph.springernature.com/things/product-market-codes/M35000
|
700 |
1 |
|
|a Campa, Alessandro.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Ruffo, Stefano.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319966632
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319966656
|
830 |
|
0 |
|a SpringerBriefs in Complexity,
|x 2191-5326
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-3-319-96664-9
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|