Statistical Physics of Synchronization

This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gupta, Shamik (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Campa, Alessandro (http://id.loc.gov/vocabulary/relators/aut), Ruffo, Stefano (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Complexity,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05007nam a2200517 4500
001 978-3-319-96664-9
003 DE-He213
005 20191220125556.0
007 cr nn 008mamaa
008 180828s2018 gw | s |||| 0|eng d
020 |a 9783319966649  |9 978-3-319-96664-9 
024 7 |a 10.1007/978-3-319-96664-9  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHS  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Gupta, Shamik.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Physics of Synchronization  |h [electronic resource] /  |c by Shamik Gupta, Alessandro Campa, Stefano Ruffo. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 121 p. 32 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Complexity,  |x 2191-5326 
505 0 |a Synchronizing systems -- Introduction -- The oscillators and their interaction: A qualitative discussion -- Oscillators as limit cycles -- Interacting limit-cycle oscillators -- Synchronizing systems as statistical mechanical systems -- The features of a statistical physical description -- Some results for noiseless interacting oscillators -- The oscillators with inertia -- Appendix 1: A two-dimensional dynamics with a limit-cycle attractor -- Appendix 2: The Lyapunov exponents -- Appendix 3: The one-body distribution function in an N-body system -- Oscillators with first-order dynamics -- The oscillators with distributed natural frequencies -- The Kuramoto model -- Unimodal symmetric g(w) -- Nonunimodal g(w) -- Appendix 1: An H-theorem for a particular simple case -- Appendix 2: Form of the function r(K) for symmetric and unimodal frequency distributions in the Kuramoto model -- Appendix 3: The numerical solution of Eq. (2.34) -- Oscillators with second-order dynamics -- Generalized Kuramoto model with inertia and noise -- Nonequilibrium first-order synchronization phase transition: Simulation results -- Analysis in the continuum limit: The Kramers equation -- Phase diagram: Comparison with numeric -- Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models -- Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance -- Appendix 3: Simulation details for the dynamics (3.9) -- Appendix 4: Derivation of the Kramers equation -- Appendix 5: Nature of solutions of Eq. (3.32) -- Appendix 6: Solution of the system of equations (3.39) -- Appendix 7: Convergence properties of the expansion (3.38). 
520 |a This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems. 
650 0 |a Statistical physics. 
650 0 |a Computational complexity. 
650 0 |a Mathematical physics. 
650 1 4 |a Statistical Physics and Dynamical Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P19090 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
700 1 |a Campa, Alessandro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ruffo, Stefano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319966632 
776 0 8 |i Printed edition:  |z 9783319966656 
830 0 |a SpringerBriefs in Complexity,  |x 2191-5326 
856 4 0 |u https://doi.org/10.1007/978-3-319-96664-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)