Statistical Physics of Synchronization

This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gupta, Shamik (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Campa, Alessandro (http://id.loc.gov/vocabulary/relators/aut), Ruffo, Stefano (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Complexity,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Synchronizing systems
  • Introduction
  • The oscillators and their interaction: A qualitative discussion
  • Oscillators as limit cycles
  • Interacting limit-cycle oscillators
  • Synchronizing systems as statistical mechanical systems
  • The features of a statistical physical description
  • Some results for noiseless interacting oscillators
  • The oscillators with inertia
  • Appendix 1: A two-dimensional dynamics with a limit-cycle attractor
  • Appendix 2: The Lyapunov exponents
  • Appendix 3: The one-body distribution function in an N-body system
  • Oscillators with first-order dynamics
  • The oscillators with distributed natural frequencies
  • The Kuramoto model
  • Unimodal symmetric g(w)
  • Nonunimodal g(w)
  • Appendix 1: An H-theorem for a particular simple case
  • Appendix 2: Form of the function r(K) for symmetric and unimodal frequency distributions in the Kuramoto model
  • Appendix 3: The numerical solution of Eq. (2.34)
  • Oscillators with second-order dynamics
  • Generalized Kuramoto model with inertia and noise
  • Nonequilibrium first-order synchronization phase transition: Simulation results
  • Analysis in the continuum limit: The Kramers equation
  • Phase diagram: Comparison with numeric
  • Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models
  • Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance
  • Appendix 3: Simulation details for the dynamics (3.9)
  • Appendix 4: Derivation of the Kramers equation
  • Appendix 5: Nature of solutions of Eq. (3.32)
  • Appendix 6: Solution of the system of equations (3.39)
  • Appendix 7: Convergence properties of the expansion (3.38).