Practical Social Network Analysis with Python

This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Raj P.M., Krishna (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Mohan, Ankith (http://id.loc.gov/vocabulary/relators/aut), Srinivasa, K.G (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Computer Communications and Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03978nam a2200505 4500
001 978-3-319-96746-2
003 DE-He213
005 20191027051147.0
007 cr nn 008mamaa
008 180825s2018 gw | s |||| 0|eng d
020 |a 9783319967462  |9 978-3-319-96746-2 
024 7 |a 10.1007/978-3-319-96746-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
072 7 |a UKN  |2 thema 
082 0 4 |a 004.6  |2 23 
100 1 |a Raj P.M., Krishna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Social Network Analysis with Python  |h [electronic resource] /  |c by Krishna Raj P.M., Ankith Mohan, K.G. Srinivasa. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXXI, 329 p. 186 illus., 73 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computer Communications and Networks,  |x 1617-7975 
505 0 |a Chapter 1. Basics of Graph Theory -- Chapter 2. Graph Structure of the Web -- Chapter 3. Random Graph Models -- Chapter 4. Small World Phenomena -- Chapter 5. Graph Structure of Facebook -- Chapter 6. Peer-To-Peer Networks -- Chapter 7. Signed Networks -- Chapter 8. Cascading in Social Networks -- Chapter 9. Influence Maximisation -- Chapter 10. Outbreak Detection -- Chapter 11. Power Law -- Chapter 12. Kronecker Graphs -- Chapter 13. Link Analysis -- Chapter 14. Community Detection -- Chapter 15. Representation Learning on Graph. 
520 |a This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis. With the Internet becoming part of our everyday lives, social networking tools are used as the primary means of communication. And as the volume and speed of such data is increasing rapidly, there is a need to apply computational techniques to interpret and understand it. Moreover, relationships in molecular structures, co-authors in scientific journals, and developers in a software community can also be understood better by visualising them as networks. This book brings together the theory and practice of social network analysis and includes mathematical concepts, computational techniques and examples from the real world to offer readers an overview of this domain. 
650 0 |a Computer communication systems. 
650 0 |a Python (Computer program language). 
650 1 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
650 2 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
700 1 |a Mohan, Ankith.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Srinivasa, K.G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319967455 
776 0 8 |i Printed edition:  |z 9783319967479 
776 0 8 |i Printed edition:  |z 9783030072414 
830 0 |a Computer Communications and Networks,  |x 1617-7975 
856 4 0 |u https://doi.org/10.1007/978-3-319-96746-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)