Practical Social Network Analysis with Python
This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | Computer Communications and Networks,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Basics of Graph Theory
- Chapter 2. Graph Structure of the Web
- Chapter 3. Random Graph Models
- Chapter 4. Small World Phenomena
- Chapter 5. Graph Structure of Facebook
- Chapter 6. Peer-To-Peer Networks
- Chapter 7. Signed Networks
- Chapter 8. Cascading in Social Networks
- Chapter 9. Influence Maximisation
- Chapter 10. Outbreak Detection
- Chapter 11. Power Law
- Chapter 12. Kronecker Graphs
- Chapter 13. Link Analysis
- Chapter 14. Community Detection
- Chapter 15. Representation Learning on Graph.