A Visual Introduction to Differential Forms and Calculus on Manifolds

This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fortney, Jon Pierre (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03003nam a2200481 4500
001 978-3-319-96992-3
003 DE-He213
005 20191028222720.0
007 cr nn 008mamaa
008 181103s2018 gw | s |||| 0|eng d
020 |a 9783319969923  |9 978-3-319-96992-3 
024 7 |a 10.1007/978-3-319-96992-3  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Fortney, Jon Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Visual Introduction to Differential Forms and Calculus on Manifolds  |h [electronic resource] /  |c by Jon Pierre Fortney. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XII, 468 p. 258 illus., 243 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Background Material -- An Introduction to Differential Forms -- The Wedgeproduct -- Exterior Differentiation -- Visualizing One-, Two-, and Three-Forms -- Push-Forwards and Pull-Backs -- Changes of Variables and Integration of Forms -- Vector Calculus and Differential Forms -- Manifolds and Forms on Manifolds -- Generalized Stokes' Theorem -- An Example: Electromagnetism. 
520 |a This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra. 
650 0 |a Differential geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Global analysis (Mathematics). 
650 1 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319969916 
776 0 8 |i Printed edition:  |z 9783319969930 
856 4 0 |u https://doi.org/10.1007/978-3-319-96992-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)