Genetic Programming Theory and Practice XIV

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: S...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Riolo, Rick (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Worzel, Bill (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Goldman, Brian (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Tozier, Bill (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Genetic and Evolutionary Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Similarity-based Analysis of Population Dynamics in Genetic Programming Performing Symbolic Regression
  • 2 An Investigation of Hybrid Structural and Behavioral Diversity Methods in Genetic Programming
  • 3 Investigating Multi-Population Competitive Coevolution for Anticipation of Tax Evasion
  • 4 Evolving Artificial General Intelligence for Video Game Controllers
  • 5 A Detailed Analysis of a PushGP Run
  • 6 Linear Genomes for Structured Programs
  • 7 Neutrality, Robustness, and Evolvability in Genetic Programming
  • 8 Local Search is Underused in Genetic Programming
  • 9 PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification
  • 10 Discovering Relational Structural in Program Synthesis Problems with Analogical Reasoning
  • 11 An Evolutionary Algorithm for Big Data Multi-Class Classification Problems
  • 12 A Genetic Framework for Building Dispersion Operators in the Semantic Space
  • 13 Assisting Asset Model Development with Evolutionary Augmentation
  • 14 Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool.