Uncertainty Modelling in Data Science

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17-21, 2018. It...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Destercke, Sébastien (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Denoeux, Thierry (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Gil, María Ángeles (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Grzegorzewski, Przemyslaw (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hryniewicz, Olgierd (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Advances in Intelligent Systems and Computing, 832
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04707nam a2200517 4500
001 978-3-319-97547-4
003 DE-He213
005 20191022082155.0
007 cr nn 008mamaa
008 180724s2019 gw | s |||| 0|eng d
020 |a 9783319975474  |9 978-3-319-97547-4 
024 7 |a 10.1007/978-3-319-97547-4  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Uncertainty Modelling in Data Science  |h [electronic resource] /  |c edited by Sébastien Destercke, Thierry Denoeux, María Ángeles Gil, Przemyslaw Grzegorzewski, Olgierd Hryniewicz. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 234 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Intelligent Systems and Computing,  |x 2194-5357 ;  |v 832 
505 0 |a Chapter 1. Imprecise statistical inference for accelerated life testing data: imprecision related to the log-rank test (Abdullah Ahmadini) -- Chapter 2. Descriptive comparison of the rating scales through different scale estimates. Simulation-based analysis (Irene Arellano) -- Chapter 3. Central Moments of a Fuzzy Random Variable using the Signed Distance: a Look towards the Variance (Redina Berkachy) -- Chapter 4. On Missing Membership Degrees: Modelling Non-existence, Ignorance and Inconsistency (Michal Burda) etc. 
520 |a This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17-21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Destercke, Sébastien.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Denoeux, Thierry.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gil, María Ángeles.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grzegorzewski, Przemyslaw.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hryniewicz, Olgierd.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319975467 
776 0 8 |i Printed edition:  |z 9783319975481 
830 0 |a Advances in Intelligent Systems and Computing,  |x 2194-5357 ;  |v 832 
856 4 0 |u https://doi.org/10.1007/978-3-319-97547-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)