Multimodal Analytics for Next-Generation Big Data Technologies and Applications

This edited book will serve as a source of reference for technologies and applications for multimodality data analytics in big data environments. After an introduction, the editors organize the book into four main parts on sentiment, affect and emotion analytics for big multimodal data; unsupervised...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Seng, Kah Phooi (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ang, Li-minn (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Liew, Alan Wee-Chung (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Gao, Junbin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This edited book will serve as a source of reference for technologies and applications for multimodality data analytics in big data environments. After an introduction, the editors organize the book into four main parts on sentiment, affect and emotion analytics for big multimodal data; unsupervised learning strategies for big multimodal data; supervised learning strategies for big multimodal data; and multimodal big data processing and applications. The book will be of value to researchers, professionals and students in engineering and computer science, particularly those engaged with image and speech processing, multimodal information processing, data science, and artificial intelligence.
Φυσική περιγραφή:XV, 391 p. 150 illus., 109 illus. in color. online resource.
ISBN:9783319975986
DOI:10.1007/978-3-319-97598-6